
Citation: Cao, Y.; Liu, W.; Qin, L.;

Chen, S.; Ye, J.; Liu, B.; Xia, X.; Wang,

C. Entropy Sources Based on Silicon

Chips: True Random Number

Generator and Physical Unclonable

Function. Entropy 2022, 24, 1566.

https://doi.org/10.3390/

e24111566

Received: 27 September 2022

Accepted: 27 October 2022

Published: 30 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Review

Entropy Sources Based on Silicon Chips: True Random Number
Generator and Physical Unclonable Function
Yuan Cao 1,2 , Wanyi Liu 1,2, Lan Qin 1,2, Bingqiang Liu 3,4, Shuai Chen 2 , Jing Ye 5 , Xianzhao Xia 6

and Chao Wang 3,4,* ,

1 College of Internet of Things Engineering, Hohai University, Changzhou 213022, China
2 Rock-Solid Security Lab., Binary Semiconductor Co., Ltd., Suzhou 215000, China
3 School of Optical and Electronic Information, Huazhong University of Science and Technology,

Wuhan 430074, China
4 Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology,

Wuhan 430074, China
5 State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences,

University of Chinese Academy of Sciences, Beijing 100190, China
6 China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China
* Correspondence: chao_wang_me@hust.edu.cn

Abstract: Entropy is a measure of uncertainty or randomness. It is the foundation for almost all
cryptographic systems. True random number generators (TRNGs) and physical unclonable functions
(PUFs) are the silicon primitives to respectively harvest dynamic and static entropy to generate
random bit streams. In this survey paper, we present a systematic and comprehensive review
of different state-of-the-art methods to harvest entropy from silicon-based devices, including the
implementations, applications, and the security of the designs. Furthermore, we conclude the trends
of the entropy source design to point out the current spots of entropy harvesting.

Keywords: entropy; TRNG; PUF; information security

1. Introduction

Since the concept of information entropy was introduced by Claude Shannon in
1948 [1], entropy has been widely used in cryptography and cybersecurity. It has been
considered as a standard measurement of index to quantize the randomness of secret
keys, which are used to protect the sensitive data [2]. The higher the randomness of
the keys, the higher the security of the data. There are two types of entropy source,
dynamic and static entropy source, which can be generated from silicon chips. Dynamic
entropy sources that provide true randomness are usually extracted from the indeterminate
physical processes, such as the jitter of ring oscillators (RO) [3,4] and thermal noise from
the digital-to-analog converter (DAC) [5], or unpredictable events, such as the human-
driven timing of mouse movements and keyboard strokes [6]. Because the indeterminate
physical processes are completely determined by the dynamic parameters of the system,
this type of entropy is categorized as dynamic entropy. True random number generators
(TRNGs) extract the dynamic entropy from random and microscopic fluctuations in physical
processes (thermal noise, shot noise, avalanches, clock drift, jitter, atmospheric noise,
external electromagnetics, quantum phenomena, etc.), which can generate independent,
uniformly distributed, unpredictable random numbers [7,8]. The pseudo random number
generator (PRNG) is another type of random number generator, also known as deterministic
random bit generator (DRBG), used to produce keys. However, the generated random
numbers from PRNG can be predictably traced back to the seed (initial states). In other
words, by knowing the seed, it is possible to reconstruct the sequence of numbers produced
by a particular PRNG. Therefore, the entropy of the random data generated by PRNG

Entropy 2022, 24, 1566. https://doi.org/10.3390/e24111566 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24111566
https://doi.org/10.3390/e24111566
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5227-2241
https://orcid.org/0000-0003-2012-0424
https://orcid.org/0000-0002-8023-5090
https://orcid.org/0000-0002-7460-7628
https://doi.org/10.3390/e24111566
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24111566?type=check_update&version=2

Entropy 2022, 24, 1566 2 of 39

comes from the seed [9]. Strictly speaking, PRNG is an entropy extension and cannot be
considered as an entropy source.

The manufacturing variations of nano-scale circuits are generated in the manufacturing
process. In other words, static entropy that is extracted from these manufacturing variations
are stable once the device is completely fabricated. Physical unclonable function (PUF) takes
advantage of this feature to extract the static entropy from uncontrollable and unpredictable
variations in the semiconductor manufacturing process and convert it into a binary stream
with a predetermined length, which can be used as a key or ID [10–14]. PUF provides a
root of trust (RoT) at the hardware layer. Its tamper-resistant property and its ability to
securely identify devices by querying, without the need for permanent keys storage or
well-defined algorithm support, vastly reduce the risk of many powerful physical attacks,
such as reverse engineering, probing, fault injection attacks, security tokens, etc. [15–18].

Complementary metal-oxide-semiconductor (CMOS)-technology-based designs are
advantageous in terms of cost and ease for mass production. Though the emerging tech-
nology [19–23] (such as memristor, magnetic tunnel junction, carbon nanotubes, graphene
and so on) based designs show attractive performance, they may not be applicable to the
industry now. Therefore, we focus on introducing the CMOS based designs in this survey.

Table 1 gives a brief summary of dynamic/static entropy.

Table 1. The properties of the dynamic/static entropy.

Dynamic Entropy Static Entropy

Source Indeterminate physical process Manufacturing process

Attribute Vary with the time Barely changes over time

Example Thermal noise, shot noise Path delay, oscillation frequency

This survey paper systematically reviews and summarizes some existing works that
are focused on entropy extraction from silicon-based devices of two security primitives:
TRNG and PUF. The rest of this paper is organized as follows. Section 2 gives the definition
of entropy. Section 3 introduces the method of harvesting entropy from TRNG, which also
primarily covers the potential dangers and threats associated with TRNG. Section 4 studies
the methods of obtaining entropy from different PUF models and analyzes the possible
risks and attacks. The unified design of TRNG-PUF is presented in Section 5. Section 6
studies and analyzes the typical applications of TRNG and PUF as entropy sources in the
field of information security. This work is summarized, and potential future research areas
are suggested in Section 7.

2. Entropy Definition

The essence of entropy is the internal chaos of a system. The German physicist
Rudolf Clausius proposed the concept of entropy in 1865 [24]. It was initially defined in
thermodynamics as the rate of change of the input heat relative to the temperature in a
reversible process.

dS = (
dQ
T

)reversible (1)

where T is the thermodynamic temperature of the substance, dQ is the heat input during the
heat conduction process, dS is the essential entropy change, and the subscript “reversible”
indicates a reversible process.

Around 1877, Boltzmann proposed that the entropy of a system and the number of all
possible microstates satisfy the following simple relationship:

S = kB ln Ω (2)

This formula is called the Boltzmann formula, where kB is the Boltzmann constant, and
Ω is the total number of microstates contained in the macrostate of the system. According

Entropy 2022, 24, 1566 3 of 39

to this formula, entropy is a measure of the degree of distribution of microstates. In 1948,
Shannon extended the concept of entropy in statistical physics to the process of information
channels [1]. The entropy defined by Shannon is called Shannon entropy or information
entropy, i.e.,

H(X) = − ∑
x∈X

p(x) log2 p(x) (3)

where X is a discrete random variable, and p(x) represents the probability of x in the
random variable. The lower the probability of a statement being correct, the more uncer-
tainty it has, and thus the more informative it is. Shannon entropy quantifies the mean
informative.

The joint entropy of two discrete random variables, X and Y, refers to the information
entropy of the element pair (x, y) of X and Y. The joint entropy is defined as follows:

H(X, Y) = − ∑
x∈X,y∈Y

p(x, y) log2 p(x, y) (4)

Conditional entropy refers to the entropy value of X when the random variable X is
given by the random variable Y. Conditional entropy is defined as follows:

H(X | Y) = − ∑
x∈X

p(y) ∑
y∈Y

p(x | y) log2 p(x | y) (5)

The relationship between conditional entropy, joint entropy and information entropy is

H(X, Y) = H(Y | X) + H(X) (6)

In cryptographic system analysis, minimum entropy is the most conservative measure
of the unpredictability of a set of outcomes. Formally, the minimum entropy of a random
variable X is

Hmin(X) = − log2 (maxx∈X p(X = x)) (7)

In this paper, without specifically mentioning it, we use Shannon entropy.

3. TRNG

Generally, the device that is responsible for producing random numbers is called an
RNG. An ideal RNG should generate patternless, independent, and identically distributed
numbers or bit streams. There are two kinds of RNG: PRNG and TRNG. The primary
distinction between them is that the output of PRNG depends on the initial seed, while
TRNG harvests randomness in the uncontrollable process of entropy sources.

The evaluation of randomness for a TRNG (or the entropy source) is not easy. It is even
harder than the design of TRNG itself. Basically, mainstream methods to test randomness
are entropy estimate, standard statistical tests, robust estimate and attack analysis.

Shannon-entropy (Equation (3)) and minimum-entropy (Equation (7)) estimates are
widely used in TRNG for estimating the nominal and worst-case entropy of the random
output, respectively. Standard statistical tests, such as Crypt-X [25], ENT utility [26],
TestU01 [27], Diehard [28] and National Institute of Standards and Technology (NIST)
statistical test suite [29], are used to check if an input bitstream is patternless and equally
distributed among “0” and “1”. Robust estimations require the under-test TRNG to work
at various conditions, of which temperature and voltage sweeps are mostly adopted. The
results of entropy estimates and statistical tests can reflect the robustness of the design.
Furthermore, attack analysis helps with optimization with respect to attack resistance.

In this chapter, we will analyze how to build a TRNG, starting with the reviews and
discussions of pseudo random and true random.

Entropy 2022, 24, 1566 4 of 39

3.1. PRNG

The main method of establishing PRNG, or deterministic RNG (DRNG), is to build
mathematical models or formulas. The seed of a PRNG is utilized to produce random bit
sequences. As a result, PRNGs are unable to generate any kind of entropy or a truly random
bitstream, and their output is entirely determined by their input seed. Nevertheless, in
some circumstances, PRNG can increase and compress the entropy of the input seed.

Linear PRNGs have low consumption and assure high throughput. Linear feedback
shift registers (LFSRs) are a widely used class of PRNG [30–33]. As shown in Figure 1,
the majority of LFSRs are comprised merely of flip-flops (FF), XOR, and ADD operations,
which are compact and conducive to digital design. Linear congruential generator (LCG) is
a popular algorithm for PRNG [34–36]. The storage-bit truncation operation, implemented
in computer hardware, can realize modulo arithmetic. The following equation defines the
output pseudo-random value Xi:

Xi+1 = (aXi + b) mod m (8)

where Xi, a, b and m are the i-th output pseudo random value, multiplier, increment and
modulus, respectively.

FF0 FF1 FF2 FFn

g3g3g2g2g1g1g0g0 gngn

clk

Galois LFSR

g3g3g2g2g1g1g0g0 gngn

clk

Fibonacci LFSR

(a)

(b)

FFFF

M
U

X
M

U
X

P

C

Previous

Next

Current

0

PASS/Capture

0

0

0

1

(b)(a)

FF0 FF1 FF2 FFn

Figure 1. Two general types of LFSR: (a) Galois LFSR, (b) Fibonacci LFSR.

Cryptography and security applications make extensive use of random numbers and
random bits. The three main components of a cryptographically secure RNG (CSRNG)
are an entropy source, an algorithm for accumulating and providing random bits to the
consuming applications, and a way to combine the first two components appropriately for
cryptographic applications. In NIST Special Publication 800-90A [37], a CSPRNG functional
model is discussed in detail (shown in Figure 2), where the entropy input is provided to a
CSPRNG mechanism for the seed.

The tests (evaluations) for CSPRNGs are stricter than for other PRNGs. For example,
CSPRNGs should pass the next-bit test. It is proved that if an RNG passes the next-bit test,
then it can pass all other polynomial–time statistical tests for randomness [38]. In addition,
CSPRNG is usually implemented with a many-to-one function, i.e., the hash function, to
make the guess of the reverse mapping very hard.

A hash-based CSPRNG is shown in NIST Special Publication 800-90A as known as
Hash_DRBG. The details of the pseudorandom bits generation function are shown in
Figure 3. The hash function is used in instantiate, reseed and generate processes. V is

Entropy 2022, 24, 1566 5 of 39

updated whenever DRBG is called during the process, while C depends on the seed. A
counter (reseed counter) records the number of requests for pseudorandom bits.

Uninstantiate

Function

Instantiate

Function

Reseed

Function

Internal

State

Generate

Function

Tests Error State Pseudorandom

Output

Personalization String

Nonce Entropy Input

Additional Input

+

C
Additional

Input (Opt.)

0x02 || V ||Additional Input 0x02 || V ||Additional Input

Reseed

counter

Hash function

V

If additional

input ≠ Null

Hash

function

Hash

function

Hash

function

0x03 || V0x03 || V

+

+

Hash

function

Hash

function

Hash

function

+
Counter

(From 1)

Pseudorandom

Output

Iterate to get

enough bits

+

C Ctr

V CReseed

counter

Figure 2. A CSPRNG mechanism in NIST Special Publication 800-90A.

Uninstantiate

Function

Instantiate

Function

Reseed

Function

Internal

State

Generate

Function

Tests Error State Pseudorandom

Output

Personalization String

Nonce Entropy Input

Additional Input

+

C
Additional

Input (Opt.)

0x02 || V ||Additional Input 0x02 || V ||Additional Input

Reseed

counter

Hash function

V

If additional

input ≠ Null

Hash

function

Hash

function

Hash

function

0x03 || V0x03 || V

+

+

Hash

function

Hash

function

Hash

function

+
Counter

(From 1)

Pseudorandom

Output

Iterate to get

enough bits

+

C Ctr

V CReseed

counter

Figure 3. A hash based CSPRNG: Hash_DRBG.

Entropy 2022, 24, 1566 6 of 39

The values of V and C are the secret values on which the security of the CSPRNG
depends. The security strength of such a DRNG is the security strength of the hash function
for pre-image resistance.

Secure Hash Algorithm-3 (SHA3) [39] is a standard cryptographic algorithm that
produces 224, 256, 384, and 512 bits of hash values by using internal bits of 5 ∗ 5 ∗ 64 = 1600
bits length. Earlier Secure Hash Algorithm-1 (SHA1) and Secure Hash Algorithm-2 (SHA2)
used a fixed-size memory block that is 512, 1024, etc., but this is not compulsory in SHA3,
and it can vary according to the requirement. The size of the message is of infinite length in
SHA3, which makes it more powerful than the previous versions [40].

SHA3 uses a new Sponge Function, named Keccak, that makes it more secure as
compared to earlier. The Keccak permutation, in contrast to other Merkle–Damgard-based
hash algorithms, operates on a state with a fixed size of b bits. In the Keccak-f permutation
(f [b]), the state size b can be 25, 50, 100, 200, 400, 800, 1600. Yet, Keccak f[1600] was
chosen for the SHA3 standard, which can be represented as a 5× 5× 64 bits 3D array.
The initializing, absorbing, and squeezing phases of the Keccak permutation are shown in
Figure 4.

0

0

ff ff ff ff ff ff

pad

Absorbing Squeezing

TruncdN Z

r

c

Figure 4. SHA3 sponge function in [39].

3.2. TRNG

In contrast to PRNG, TRNG captures randomness in entropy sources.
A TRNG is a security primitive which produces unpredictable and random numbers.

Figure 5 depicts a TRNG with a universal design. The random output of TRNG should
not be predictable, even if all the design details (e.g., schematic, algorithm, timing, and
operations) are well known.

FFFF FFFF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Galois LFSR

FF FF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Fibonacci LFSR

(a)

(b)

M
U

X
M

U
X

CNT

>?

M
U

X
M

U
X

CNT

output

Challenge

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Entropy

Source

Health

Test

Applications

Post

Process

Post

Process

DRNG

Failure alarm

Entropy

harvest

component

Random

bits

Figure 5. TRNG model.

Due to its non-periodicity and non-reproducibility, an ideal TRNG can guarantee
the security of the information system. The entropy source is the root part of TRNG,
while the entropy harvesting components and post-processing also rule the TRNG designs.
The entropy source provides all the unpredictability. The goal of the entropy harvesting
component is to maximize the capture of randomness. The existence of post-processing
techniques that whiten the spectrum and remove bias from raw data depends on the
security requirements and the caliber of the raw data.

Entropy 2022, 24, 1566 7 of 39

TRNG can be divided into two categories based on the composition: (1) a pure TRNG
(PTRNG) implementation without complex post-processing; and (2) a hybrid PTRNG
that applies design elements from DRNGs and PTRNGs, where the additional complex
mathematical post-processing can be utilized as security anchor.

3.2.1. Entropy Sources of TRNG

A TRNG can also be divided by the types of entropy sources and entropy harvesting
components. In this subsection, we will discuss the entropy source in the integrated circuit
(IC) chips.

In integrated circuit design, noise is inevitable and undesired. However, in TRNGs,
enlarging and capturing unpredictable and human-uncontrollable noise sources are the
root principles. For a good entropy source model, the source itself should be white noise
with a Gaussian distribution. Thus, a good entropy source is consistent with the observed
properties of noise.

A. Electric noise
Thermal noise, shot noise, and flicker noise (1/f noise) are the three basic types of

electric noise. Thermal noise is presented in any device (such as diodes, triodes, and
metal oxide semiconductor field effect transistor (MOSFET)) with resistance, caused by
the random collision of electrons with thermally excited atoms that is analogous to the
Brownian motion of small particles in a liquid. Thermal noise will persist unless all devices
are superconducting and are approximately expressed by

i2thermal = 2kTgm (9)

where i2 is the current variation, k is Boltzmann’s constant, T is the temperature and gm is
the transconductance of the device. Thermal noise is white, which is a good entropy source.
The power spectral density of thermal noise drops gradually to 0 at up to a few hundred
terahertz; in other words, it is easy to harvest thermal noise in gigahertz.

Shot noise is caused by unavoidable random statistical fluctuations of the electric
current when charge carriers traverse a gap, which was clarified by W. Schottky. The shot
noise is white noise and can be written as

i2shot = 2qID∆ f (10)

where q is the electronic charge, ID is the average value of a series of random independent
pulses, and ∆ f is the bandwidth in hertz. Shot noise increases with the bandwidth of
measurement, whose standard variance is

σ =

√
i2 =

√
2qID∆ f (11)

The 1/ f noise originates from carrier number fluctuations (CNF) [41] in MOSFETs.
The dynamic charge trapping could also induce fluctuations of the carrier mobility, giving
rise to the correlated mobility fluctuations (CMF) [42–44]. The noise voltage of 1/ f noise is
given by

v2
1/ f =

K
CoxWL

1
f

(12)

where K is a process variable, W and L are size parameters of MOSFET, and Cox is the
gate dielectric capacitance per unit area. 1/ f noise is directly inverse to the frequency f .
The noise current of 1/ f noise decreases with the increase in frequency, while the current
of thermal noise remains constant. There is a corner frequency, above which 1/ f noise
dominates. Below the corner frequency, thermal noise dominates. The 1/ f noise may also
cause a correlation of the RNG output according to Equation (12). The 1/ f noise is less
effective than a TRNG that works at a higher frequency.

Entropy 2022, 24, 1566 8 of 39

B. Chaos
This category of entropy source is based on a deterministic chaotic system or circuit.

As the random states and output are generated from the deterministic rules, it seems weird
for a TRNG. However, a chaotic map is particularly sensitive to the initial conditions, so the
chaotic map can be triggered by nondeterministic physical processes (for example, environ-
mental noise or electrical noise generated) that result in long-term unpredictability [45–47].

Generally, a chaotic map should be driven by a clock signal, which makes the through-
put adjustable, dynamically, at runtime. Chaotic maps can be classified into two categories,
continuous time and discrete time, depending on whether the current state is related to
the previous states. The continuous time chaotic maps are mainly established by analog
devices [48]. A discrete-time chaotic map can be implemented by digital a circuit IC that
can be constructed by only a few digital devices [49]. Thus, a good digital chaos-based
TRNG has great potential in lightweight hardware implementations.

C. Jitter noise
The difference between the actual clock and the ideal clock in the time domain is

known as jitter, and it is an important statistic for assessing the reliability of the clock
signal. There are many causes of jitter, including equipment noise, power noise, external
interference, load changes, and so on.

In TRNG designs, ring oscillators (ROs) are a crucial component in producing jitter.
The following analysis theoretically explains the principle of TRNG design based on jitter
noise. The total jitter of the RO in the strong inversion can be expressed mathematically
as [50]

σ2
τ =

kT
I f0

(
2

VDD −Vth
(γN + γP) +

2
VDD

)
(13)

where k, T, I , f0, γN , γP, Vth and VDD are the Boltzmann constant, absolute temperature,
saturation current, oscillation frequency, noise coefficients of negative channel metal-
oxide-semiconductor (NMOS) and positive channel metal-oxide-semiconductor (PMOS)
transistors, threshold voltage and power supply voltage, respectively.

The jitter variance also depends on the operating region of CMOS transistors. The
subthreshold region contributes significantly higher noise currents since the diffusion
currents and transconductances are relatively small in the subthreshold region. The total
jitter generated by the inverters conducted in the weak inversion (subthreshold region) is
given by [51]

σ2
τw =

q
I f0

(
1 + e−VDD/2Ut

)
(14)

where q is the Coulomb constant, and Ut is the thermal voltage given as (kT)/(q). To
maximize entropy, some designs bias the RO to the subthreshold region, which can also
significantly save energy consumption [52]. Due to their simple structure and efficiency,
TRNGs using phase jitter have been extensively researched [3,4,53].

D. Metastability
The metastability is a phenomenon, an undefined or unbounded duration state, that

can be attained by a circuit or a system before it is set to a more stable state. The following
is an illustration of metastability for two inverters (Figure 6):

Entropy 2022, 24, 1566 9 of 39

FFFF FFFF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Galois LFSR

FF FF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Fibonacci LFSR

(a)

(b)

FFFF

M
U

X
M

U
X

P

C

Previous

Next

Current

0

PASS/Capture

0

0

0

1

(b)(a)

AC

R30

All-zero detector

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

All-zero detector

FFFF
Out

8bits

Pass/Capture

Set

(c)

Run

Stage A Stage B Stage C Stage D Stage E Stage F

Edge 1 Edge 2 Edge 3

10 10

1

S

10 10

0

S

1

10 10

0

S

1

10 10

S

bin 0

10 10

S

10 10

S

1

1

0

0

0

10 10

0

S

1

10 10

0

S

1

Q DQ D

Q DQ D

Q DQ D

m-bit

ripple counter

m-bit

ripple counter
cnt

Pulse

Width

Encoder

C0

C1

Cn-1

bin n-1

Q DQ D
Raw

bit

Q DQ D

Raw

bit

Valid

EN

EN

!RunSys

clk

Raw bit

Valid

Sys

Raw bit

Sys

Stage F OutStage C Out

VDDVDD

VL VR 50%VL

50%

VR

V = V’+

K*noise

Figure 6. Metastability of two inverters.

An unexpected state caused by metastability in cross-coupled inverters, latches, D-
Flip-flops (DFFs), and SRAMs can be used to create a random bit stream at a high bit
rate [54–57]. The major problem with this random source is that metastability suffers from
process variations. Thus, post-processing units are required in most designs.

3.2.2. Entropy Harvest Method/Components

In this chapter, we focus on TRNG designs that originate from solid-state devices or
can be easily implemented and integrated on-chip with other circuit modules for mass
production. Most silicon TRNGs are designed to harvest physical or environmental ran-
domness using one of four entropy sources, namely, noise-based, chaos-based, jitter-based,
or metastability-based TRNGs. Some representative TRNG designs are summarized in
Table 2.

Table 2. Performance comparison of TRNG designs.

Design Technology and Feature Entropy Type Throughput (Mbps) Entropy Advantage

[58]
200 nm

Noise

4.7 NA Simple structureOscillator
ADC

[59] 65 nm 3000 0.9996 (max) High energy efficiency
Differential amplifier 0.9991 (min) High speed

[60] Charge-Trapping FinFET 2000 0.97 Strong robustness

[48] 55 nm

Chaotic

2 0.9997 Low power3-T Chaotic Map

[47] 180 nm 0.27 1 Ultra-low powerADC+Chaotic Map

[49]
FPGA

1600 0.995
High speed

ACR30 All digital
Lightweight

[3] 130 nm

Jitter

0.1 0.999 On-chip entropy assurance
RO Simple structure

[53] Artix-7 FPGA 138 NA Simple structure
RO Lightweight

[61] Zynq-7000 FPGA 12.5 0.999 Lightweight
Oscillator+TDC High area efficiency

[57]
Spartan 3E FPGA

Metastability
5 NA

Lightweight
JK Flip-flop High area efficiency
D Flip-flop Easy integration

[62] 130 nm 2.39 0.9 (min) Low power
Noise enhanced latch Power attack tolerant

A. Noise-Based TRNG
Noise-based TRNG utilizes electronic noise to generate random bitstreams. For this

category of TRNG design, the common challenge is that the noise amplitude is always

Entropy 2022, 24, 1566 10 of 39

orders of magnitude smaller than the digital output of the TRNG. Thus, many of these
TRNGs are equipped with operational amplifiers to boost the noise magnitude for entropy
capturing [58,59], which can consume significant power and area. In addition to traditional
analog-to-digital converter (ADC) methods, time-to-digital converter (TDC) methods are
widely used to quantify noise in noise-based TRNGs.

Normally, the noise-based TRNGs are easier to achieve a high throughput due to the
superiority in the distribution of electrical noise mentioned above.

Recently, a novel TRNG design was demonstrated utilizing stochastic short-term
recovery of charge-trapping fin field-effect transistor (CT-FinFET) devices [60]. The main
idea to harvest the noise is to digitalize the recovery current. The sensing scheme for
measuring the recovery time of CT-FinFET is shown in Figure 7a. The IDS is captured by a
resister, and Vcell is compared with a Vre f to output VO, which is the Flag signal. The short-
term recovery of the CT-FinFET is repeatedly sampled using an RO-based time-to-digital
count converter (TDCC) unit and then serialized into a bit stream (shown in Figure 7b),
whose throughput is up to 1.5 GHz.The typical read current curve of a FinFET device
is shown in Figure 7c, and the short-term recovery time can be traced by a read voltage
signal given on the gate. The counter stops as the FLAG jumps from “0” to “1” when the
traced voltage is smaller than VREF as shown in Figure 7d. Thus, the short-term recovery is
converted to the 16-bit output of the TDCC. Due to the existence of noise, the recovery time
is slightly different, which impacts the least significant bits (LSB) variations of the 16-bit
output. In [60], it is reported that the short-term recovery exhibits a stochastic nature in the
9 lowest-order bits of the count number that pass the NIST tests without post-processing.

+

-

Vref
Flag

Sampling

resistor

+

-

Vref
Flag

Sampling

resistor

VBL

VwL

Vcell

Sense

Circuit

Vg

FinFET

F
la

g

R Q

S

Rst

RO CYCLE

COUNTER

16-bit

counter

D QD Q

Truncated

circuit
9 LSBs

Random bits

(a)

Inverter chain BufferIDS

T1

VDD/2

IB

C

VC

R1

OUTPUTINTPUT

IDS

B1

(c)

5

10

15

20

25

C
u

rr
e
n

t
(μ

A
)

Recovery time (s)
10

-5
10

-1
10

-1
10

-3
10

-7

5

10

15

20

25

C
u

rr
e
n

t
(μ

A
)

Recovery time (s)
10

-5
10

-1
10

-1
10

-3
10

-7

Time (μs)

V
o

lt
a
g

e
 (

V
)

(d)

(b)

Read VWL=-0.5V, VBL=0.3V, VREF=1.2V is the

reference for device recovery point capture.

Figure 7. The TRNG using stochastic short-term recovery of CT-FinFET in [60]. (a) The sense circuit,
(b) the entropy extraction circuit, (c) the erase (ERS), program (PGM) and read (READ) operations of
CT-FinFET, and the work current dropping curve within 1 s after PRG, showing a short term recovery
characteristic. (d) The sensing scheme of measuring the recovery time of CT-FinFET.

Another representative noise-based TRNG design is demonstrated utilizing a dynamic
voltage feedback tuning (DVFT) mechanism to guarantee the feasibility and robustness of
TRNG harvest randomness from the power supplier [63]. The noise generated by various
power suppliers shows promise based on their measurement results. Since the Gaussian
distribution of the noise implies that half of the distribution is greater than the mean and

Entropy 2022, 24, 1566 11 of 39

half is less than the mean, discriminating the voltages between, above and below the mean
can produce random streams. As shown in Figure 8, benefiting from the DVFT design, no
amplifier is used to prevent the TRNG from the exhausting area and power consumption.
In an ideal case, R1 drops the power voltage to (VDD/2). For ideal inverters, (VDD/2)
is the balance point to capture noise. Considering the random noise, these inverters act
as amplifiers to amplify the input variations and push the output away from (VDD/2)
to 0 and VDD. The addition to the TRNG circuit is the DVFT, which includes a buffer
(B1), a pre-charged capacitor (C), and a transistor (T1). The buffer B1 is used to isolate
the TRNG output from the feedback; the capacitor C integrates the past zeros and ones;
and the transistor T1’s effective resistance varies with the voltage driven by C. When the
inverter chain’s input is not near (VDD/2), assuming VGS of T1 is increased, Ids is also
increased. As Ids increases, so does the voltage drop across R1, lowering the voltage at
p1, the inverter chain’s input to (VDD/2). When voltage at the input of the inverter chain
decreases, the DVFT circuit tunes the voltage by an opposite feedback process, which
results in the self-adjusting TRNG mechanism. Under the DVFT mechanism, the inverter
chain captures the variations of power supplies and outputs random bits.

+

-

Vref
Flag

Sampling

resistor

+

-

Vref
Flag

Sampling

resistor

VBL

VwL

Vcell

Sense

Circuit

Vg

FinFET

F
la

g

R Q

S

Rst

RO CYCLE

COUNTER

16-bit

counter

D QD Q

Truncated

circuit
9 LSBs

Random bits

(b)(a)

Inverter chain BufferIDS

T1

VDD/2

IB

C

VC

R1

OUTPUTINTPUT

IDS

B1

Figure 8. The dynamic voltage feedback tuning structure.

B. Chaos-based TRNG
Luo et al. [49] present a novel TRNG design method based on a chaotic cellular

automata 30 (CA30) topology. The state evolution of the CA30 scheme is chaotic [64], and
the authors have implemented an asynchronous circuit realization of CA30 (ACR30) to
harvest random behaviors. For the whole design shown in Figure 9, nine ACR30s are
employed to set up the self-timed ring, and eight of them are used to generate true random
number sequences. Eight DFFs are clocked by the Pass/Capture signal to sample the
random bits. Since the ACR30 has a “stable” state that can lock the state of the oscillation
chain, two detectors are added to pull out of the “stable” state of the ACR30-based ring
structure. The footprint of this schematic is approximately equivalent to 75 NAND gates,
which is a very lightweight design.

Due to the purely digital nature of the chaotic TRNG design, the authors can realize
this TRNG structure in FPGA devices, which consume only 53 LUTs and 22 DFFs in total
and achieve a power efficiency of 8.2 pJ/byte. The practical measurements of the TRNG
chip achieve a power efficiency of 0.63 pJ/bit at a clock speed of 250 MHz, which takes the
auxiliary circuits and IO pins into consideration, and the achieved throughput is 1 Gb/s.
The harvested random numbers passed all the tests of NIST SP800–22 with a high passing
rate and passed all the IID test cases with a minimum entropy of 7.07026 (8-bits) in NIST
Test Suite SP800–90B.

Entropy 2022, 24, 1566 12 of 39

FFFF FFFF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Galois LFSR

FF FF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Fibonacci LFSR

(a)

(b)

FFFF

M
U

X
M

U
X

P

C

Previous

Next

Current

0

PASS/Capture

0

0

0

1

(b)(a)

AC

R30

All-zero detector

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

All-zero detector

FFFF
Out

8bits

Pass/Capture

Set

(c)

Figure 9. (a) The asynchronous circuit of RC30 (ARC30). (b) All-zero detector. (c) The TRNG design
based on ARC30.

C. Jitter-based TRNG
Figure 10 shows a conventional design of oscillator-based TRNGs, whose randomness

is derived from the instability of oscillating signals caused by the noise (i.e., jitter) in the
circuit. The entropy source consists of two oscillators, for example, RO. The slow RO
samples the output (oscillating signal) of the fast RO in a sampling unit, such as a D
flip-flop.

RO2

RO1

DFF

D Q

Random out

Figure 10. RO-based TRNG.

Another method to extract jitter noise is to utilize TDC (time-to-digital converter) as
the entropy harvester [61,65,66]. As it is discussed in Section 3.2.2 A, TDC is utilized to
measure or capture slight time intervals between two signal edges. When the entropy
source is jitter, TDC can trace signal edges, and convert the pulse width to binary data. The
jitter is contained in oscillation edges, and the output of the TDC has captured entropy,
which is generally shown in the LSBs of the TDC output.

In [61], TDC effectively acquires jitters accumulated independently by each edge, as
shown in Figure 11. Once the run signal is valid, the six stages will have an identical mean
period and inevitably collide due to noise influence. The “Stage F OUT” is connected to
a delay chain, where the time of the adjacent oscillating edges is digitized. When the run
signal fails, edge 1 will trigger the corresponding DFFs to sample the state of the delay
line, where the DFF output C0 − Cn−1 is encoded into the TRNG raw bits. Through post-
processing based on the binary linear codes [67], the proposed TRNG occupies 33 slices
and achieves a throughput of 12.5 Mbps with post-processing of Golay code on a Xilinx
Zynq-7000 FPGA, and the generated bit streams pass the NIST SP 800-90B test and the
AIS-31 test.

Entropy 2022, 24, 1566 13 of 39

FFFF FFFF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Galois LFSR

FF FF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Fibonacci LFSR

(a)

(b)

FFFF

M
U

X
M

U
X

P

C

Previous

Next

Current

0

PASS/Capture

0

0

0

1

(b)(a)

AC

R30

All-zero detector

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

All-zero detector

FFFF
Out

8bits

Pass/Capture

Set

(c)

Run

Stage A Stage B Stage C Stage D Stage E Stage F

Edge 1 Edge 2 Edge 3
10 10

1

S

10 10

0

S

1

10 10

0

S

1

10 10

S

bin 0

0

10 10

0

S

1

10 10

0

S

1

Q DQ D

Q DQ D

m-bit

ripple counter

m-bit

ripple counter
cnt

Pulse

Width

Encoder

C0

Cn-1

bin n-1

Q DQ D
Raw

bit

Q DQ D

Raw

bit

Valid

EN

EN

!RunSys

clk

Raw bit

Valid

Sys

Raw bit

Sys

Stage F OutStage C Out

Figure 11. Three-edge RO-based true random number generator with time-to-digital conversion
TRNG.

D. Metastability-based TRNG
Recently, a latch-based TRNG that harvests the metastable region’s enhanced random

noise with 8-bit von Neumann post-processing was presented in [62] as shown in Figure 12.

FFFF FFFF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Galois LFSR

FF FF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Fibonacci LFSR

(a)

(b)

VL VR 50%VL

50%

VR

V = V’+

K*noise

VDD

R

VDD

R
S3 S3

S1

S2

S1

S2

Clk

Driver

ES

Latch
Sense

Circuit

Clk1

Clk2

S1

S2

S3

SEN

Entropy source (ES)

ES1 ES1 ES1 ES1

RAW bit
VN8W

Full Entropy

Bitstreams

(a) (b)

VGL VGR

Figure 12. (a) Latched cell and (b) TRNG core presented in [62].

To enhance the noise, the equalization phase of the two inverters in the latch is divided
into a low-resistance (LR) phase and a high-resistance (HR) phase by turning S3 on and
off, respectively. In the LR phase, the gate and drain voltages in each inverter are quickly

Entropy 2022, 24, 1566 14 of 39

equalized. In the HR phase, the RC delay time is added, and a damped oscillation is
introduced. Thus, small noise is amplified into large-amplitude noise with a random
phase. An additional sense circuit is utilized to read VGL and VGR differences, as shown in
Figure 12b.

The entropy harvesting component consists of four entropy sources (ESs) and 4-bit
XOR circuits. To remove residual bias and correlations, 8-bit von Neumann post-processing
with waiting (VN8W) is used. While VN8W has a larger area overhead, it brings higher
throughput and higher energy efficiency for the TRNG core. The randomness of the TRNG
output is verified by the NIST SP 800-22 and NIST SP 800-90B tests. The fabricated chips
achieve a power efficiency of 0.186 pJ/bit at 0.3 V, consume a core area of 661 µm2, and a
total area of 5561 µm2 including VN8W. Furthermore, to verify the power noise injection
attack tolerance, one chip with two TRNGs is measured under a supply noise frequency
range of 0.1–59.335 MHz with a 1.1× growth step. According to the test results, the proposed
TRNG has shown robustness against power noise injection attacks, whose output passes
the NIST SP 800-22 and NIST SP 800-90B tests as well.

3.3. Post Processing

The randomness of TRNGs may be weakened due to the PVT variations [68]. Post-
processing is used to correct the statistically flawed output raw stream. It not only masks
the defects of output bits, but also increases throughput in some applications. The widely
used simple correctors are XOR [69,70], LFSR [71], von Neumann corrector (VNC) [72]
and so on. Post-processing can also be as complicated as resilient function [73] and hash
function [37].

The XOR correctors gather the TRNG raw bits from several entropy sources and XOR
them altogether to produce a 1-bit output. XOR correctors require that the number of
entropy sources is greater than 1, but it reduces the throughput. The more entropy sources
there are, the higher the entropy will become in the output bitstreams.

The LFSR correctors are seeded by the raw bits and expand the random output by a
pseudo-random mechanism. The risk of this kind of post processing is that if the entropy
of the input bits is low, the pseudorandom will predominate in the output bits, crashing
the true random and decreasing entropy.

VNC is an ideal method to reduce bias. It compares pairs of bits and outputs “1”, “0”,
or “null” ([1,0] = 0; [0,1] = 1; other = null). However, when this method is used to deal with
highly biased data, the output rate is greatly reduced.

These correctors can be implemented online or offline, but the security of these algo-
rithms is hardly guaranteed when an attacker targets the entropy source. NIST special
publication 800-90A actually recommends employing one of the proven post-processing
methods based on cryptographically secure primitives, e.g., block ciphers or cryptographic
hash functions with a health test mechanism, to make TRNGs cryptographically useful. Yet,
the obvious drawback of cryptographically secure post-processing is that the extra power
overhead and area is unbearable for lightweight applications.

3.4. Risks and Attacks

Attack analysis can also be used to evaluate the TRNG randomness, which is strongly
related to system security. It is a common practice in applied cryptography to check the
security of all building elements independently. For this reason, evaluating the robustness
of the generator and all its parts is of great interest [74].

It is reported that attacks on the RNGs are possible, both passively and actively, such
as side-channel attacks (SCA) [74], fault injection attacks [75–77] and machine learning
attacks [78]. With the rapidly advancing machine learning algorithms, new challenges
are coming soon. A general structure of possible attacks is shown in Figure 13. Active
attacks tend to modify the behavior of the generator to control its output. In contrast,
passive attacks collect some information about the generator to predict future values with a
non-negligible probability or to easily tune an upcoming active attack.

Entropy 2022, 24, 1566 15 of 39

1 4

4

2

3

5

Figure 13. Passive (1, 5) and active (1, 2, 3, 4) attacks on a general TRNG structure.

SCA obtains privacy from side-channel information, including timing, power, elec-
tromagnetic and other physical signals, when edge devices interact with the external
environment. Bayon et al. [74] showed the vulnerability of RO-based TRNG to the EM
active noninvasive attack. To retrieve the information on the RO-TRNG embedded in the
device, they used a so-called differential frequency analysis. Since ROs are more sensitive
to the environmental conditions than those of the system clock, RO frequency contributions
to the power spectral density (PSD) can be discerned by performing differential frequency
analysis. Benefiting from this, the authors successfully retrieved the frequency and location
of the oscillating ROs. Having retrieved the information on the location of the RO-TRNG
and its working frequencies, it is able to properly tune the active electromagnetic attack. The
test results in [74] show that if under attack, the two ROs are synchronized and operated at
the same frequency, and the TRNG would not pass the complete test suite.

A fault attack introduces deliberate faults into the computation of the cryptographic
function and exploits the faulty results to extract information about the secret key. Environ-
mental elements that can be used for injecting faults are varied, such as high temperature,
ultralow temperature, strong electromagnetic, and strong light environment [75]. For
example, most oscillator-based TRNGs are vulnerable to frequency injection attacks [76,77].
The oscillation phase of free-running ROs can be locked by injecting frequency into the
power. As a result, the white entropy source (jitter) is destroyed. Figure 14 shows the attack
result on a TRNG in automated teller machines. The dark dots represent “0”, and the white
dots represent “1” in the TRNG output.

(a) (b) (c)

Figure 14. Frequency injection attack results on a TRNG which was implemented in [77]. (a) no
injection, (b) 1.822880 MHz injection and (c) 1.929629 MHz injection.

Entropy 2022, 24, 1566 16 of 39

Recently, a deep-learning-based SCA was developed to attack a TRNG, which was
implemented on FPGA [78]. The original MURO-TRNG is presented in [73]. To implement
the SCA, a bitstream modification process is used to add extra flip-flops (FFs) into the
original MURO-TRNG core, where the distribution of power consumption overlaps can
be distinguished (shown in Figure 15). If 200 extra flip-flops are added to the bitstream of
the device under attack, an accuracy of close to 100% can be achieved, using the proposed
bitstream modification process. Strictly speaking, the deep learning attack in [78] has
not broken the core since the extra bitstream modification process is necessary. However,
machine learning attacks remain a potential threat, and they have demonstrated some
possible trends for successfully attacking a TRNG with the insertion of a hardware Trojan
into the original design or chip.

FFFF FFFF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Galois LFSR

FF FF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Fibonacci LFSR

(a)

(b)

FFFF

M
U

X
M

U
X

P

C

Previous

Next

Current

0

PASS/Capture

0

0

0

1

(b)(a)

AC

R30

All-zero detector

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

All-zero detector

FFFF
Out

8bits

Pass/Capture

Set

(c)

Run

Stage A Stage B Stage C Stage D Stage E Stage F

Edge 1 Edge 2 Edge 3

10 10

1

S

10 10

0

S

1

10 10

0

S

1

10 10

S

bin 0

10 10

S

10 10

S

1

1

0

0

0

10 10

0

S

1

10 10

0

S

1

Q DQ D

Q DQ D

Q DQ D

m-bit

ripple counter

m-bit

ripple counter
cnt

Pulse

Width

Encoder

C0

C1

Cn-1

bin n-1

Q DQ D
Raw

bit

Q DQ D

Raw

bit

Valid

EN

EN

!RunSys

clk

Raw bit

Valid

Sys

Raw bit

Sys

Stage F OutStage C Out

VDDVDD

cnt

Vl Vr

Figure 15. Power consumption of MURO-TRNG core [78]. (a) The origin design, (b) 200 extra
flip-flops are added. Note that N is the number of added FFs.

To protect the design from attack over a larger range of noise, decoupling capacitors
can be placed close to the power rail or around the ROs in the layout [79]. In terms of
countermeasures to attacks and environmental variations, structure optimization [80] or a
reliable online health test mechanism [3,81] is necessary.

4. PUF

PUF derives entropy from the physical properties of the integrated circuit (IC). Each
chip varies, owing to manufacturing unpredictability. PUFs extract the static entropy from
manufacturing process fluctuations as opposed to TRNGs. Once the chip is constructed,
the manufacturing process differences are coagulated and alter very little during the course
of the chip’s lifetime. As a result, we can refer to this type of entropy as static entropy.

The primary function of PUF is to serve as a source for identification and authentication.
Every device should have a distinctive label in order to ensure genuine authentication. To
explain the usage, two concepts are proposed, intra-PUF variation and inter-PUF variation,
which are calculated by the Hamming distance (HD). Intra-PUF variation and inter-PUF
variation are also called inter-die HD and intra-die HD, respectively. Intra-die PUF variation
is defined as the number of bits in a PUF response that vary when an identical challenge
is repeatedly queried on a given PUF device in a given environment, while inter-die PUF
variation is defined as the number of bits in a PUF response that vary between different
devices for a set of shared challenges. For the application of secure authentication, intra-
PUF variation should be low so that the PUF can be verified. On the other hand, inter-PUF
variation should be high (ideally 50% on average) so that two separate PUFs have maximally
decorrelated responses.

Basically, a PUF generates a sequence (response) of the unique signature by input
initial states (challenge), so-called challenge–response pairs (CRPs). Each PUF can be
represented as a black box, R = f (C), as illustrated in Figure 16, where the f () is secret.

Entropy 2022, 24, 1566 17 of 39

FFFF FFFF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Galois LFSR

FF FF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Fibonacci LFSR

(a)

(b)

FFFF

M
U

X
M

U
X

P

C

Previous

Next

Current

0

PASS/Capture

0

0

0

1

(b)(a)

AC

R30

All-zero detector

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

All-zero detector

FFFF
Out

8bits

Pass/Capture

Set

(c)

PUF
Challenge Response

R = f(C)

Figure 16. PUF model.

The PUF circuits tend to be robust and small in size, which makes them well suited
for radio-frequency identifiers (RFIDs), smart cards, and other small and low-cost internet-
of-things (IoT) devices [82].

Based on the number of CRPs, PUF can be divided into two categories: weak PUF and
strong PUF. Strong PUFs are typically used for authentication, while weak PUFs are used
for key storage. Explicitly stated, weak PUFs have the following properties:

• A small number of CRPs (grows linearly with area or unit component).
• Response is reproducible and stable to a certain challenge, and robust to the environ-

ment.
• Response is random and unpredictable, which only depends on the process variations

of IC.
• Even if the f () is leaked, the mapping of response and challenge pairs cannot be

rebuilt in another device or chip.

The weak PUFs can generate only one or a limited number of CRPs [83].
In contrast, the requirements for strong PUFs are as follows:

• The number of CRPs must be very large, which makes it impossible for the opponent to
enumerate all CRPs in a fixed time. The CRP space grows exponentially with the area.

• CRPs should be stable enough to be effective against ambient conditions and multiple
readings.

• Open access mode: any entity with access to a strong PUF can apply multiple stimuli
and can read out the corresponding responses. There are no incentives and no response
to PUFs that are protected, controlled, or restricted access.

• Security: neither the attacker nor the manufacturer of the PUF can correctly predict
the response to a randomly chosen stimulus. This conclusion holds, even if the above
two parties can access strong PUF for a considerable period of time, even with proper
physical measurements.

Strong PUFs provide enough CRPs for authentication without the need for any ad-
ditional cryptographic hardware. However, any internal functionality of significant PUF
leaking is prohibited. On the other hand, a robust PUF may be sufficiently mined for CRPs
to allow for the training of machine learning models that can accurately predict CRPs.

In terms of randomness, PUF was evaluated similarly to TRNG. However, there
are differences in the robustness tests. Uniqueness and reliability are the most important
indicators in PUF evaluation. Uniqueness measures the ability to distinguish two identically
designed PUF instances. It can be measured by calculating the inter-die HD:

inter-die HD =
2

m(m− 1)

m−1

∑
u=1

m

∑
v=u+1

HD(Ru, Rv)

n
× 100% (15)

where Ru and Rv are the n-bit response of two different chips, u and v, to the same challenge
C. The inter-die HD is usually measured for the appropriate number of chips in a nominal
environment for hundreds or thousands of challenges.

The reliability of a PUF can be measured by the intra-die HD of its responses when
the same challenge is applied to the same PUF instance. Some designs also use the bit error
rate (BER) to evaluate the reliability. The intra-die HD is expressed as follows:

intra-die HD = BER =
1
k

k

∑
j=1

HD(Ri, Ri,j)

n
× 100% (16)

Entropy 2022, 24, 1566 18 of 39

where the Ri is an n-bit response to an input challenge C produced by a PUF chip i under
the nominal operating condition, and the same set of challenges are then applied k times to
obtain the response Ri,j for j = 1, 2, . . . , k.

4.1. PUF Models

In this section, the architectures and models of typical silicon-based PUFs are discussed.
Weak PUFs and strong PUFs are discussed separately due to their different mechanisms.
Some representative PUF designs are summarized in Table 3.

Table 3. Performance comparison of PUF designs.

Design Technology Entropy Type Inter-Die HD Intra-Die HD Advantage

[10] Virtex4 FPGA

Osillator

46.15% 0.48% Simple structure
Digital RO (1.2 V, 20 ◦C) (worst, 1.08 V, 120 ◦C) Easy integration

[84] Current starved RO 49.97% 4.12% Reliability enhanced(1.1 V, 27 ◦C) (worst, 0.9 V, 27 ◦C)

[85]
General SRAM

SRAM

49.97% <14% Easy integrationFPGA (nominal FPGA (worst, −20 ◦C)
power, 25 ◦C)

[86]
110 nm 49.10% 5.35% Better reliabilitySRAM+ECC
Linear shift register (1.5 V, 25 ◦C) (worst, 1.5 V, 85 ◦C)

[87] 110 nm Delay 40% 4.82% Easy integrationGeneral APUF (1.8 V, 27 ◦C) (worst, 1.85 V, 42.5 ◦C)

[88] 65 nm Voltage 50.26% 4.66% Low power
(0.9 V, 27 ◦C) (0.9 V, 50 ◦C) ML resistant

4.1.1. Weak PUF

A. Oscillator PUF
Oscillator PUF [10,11,89] contains N identically designed oscillators, and transforms

the frequencies of free oscillating oscillators to binary data by counters. The frequencies
are compared to generate response bits. The entropy source of this category of PUF is
unpredictable mismatch delay variations in every single delay stage, where the oscillators’
frequency relays on. RO PUF is a widely implemented PUF, which is shown in Figure 17.
If there are N ROs, then the number of possible pairings is N(N − 1)/2. However, the
number of CRPs is limited due to correlations. Thus, RO PUF is a weak PUF.

Note that the responses of RO PUF are measured by counters. The RO PUF is sus-
ceptible to the same set of environmental variations and noise sources. As a result, some
research has concentrated on error correction or PVT resistance in applications [84,90].

FFFF FFFF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Galois LFSR

FF FF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Fibonacci LFSR

(a)

(b)

M
U

X
M

U
X

CNT

>?

M
U

X
M

U
X

CNT

output

Challenge

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Figure 17. RO-based PUF.

Entropy 2022, 24, 1566 19 of 39

B. SRAM PUF
A popular weak PUF structure exploits the positive feedback loop in an SRAM [12,91,92].

The basic block is shown in Figure 18. The challenge to an SRAM PUF is a memory address,
while the corresponding PUF response is the content of the uninitialized memory cells at this
address. A basic SRAM cell is shown in Figure 19. The SRAM cell has two stable states, stored
as “1” or “0”, and the feedback mechanism will force the cell to fall into a state when the cell is
powered up, protecting the storage data from noise. When no write operations are made, the
ideal SRAM cell has an equal opportunity to be pushed into “1” or “0”. Yet in actual designs,
the transistors’ threshold is slightly different, which results in a certain state of the feedback
loop due to the process variations. Thus, the SRAM PUF is reached. However, a small number
of SRAM cells are unstable and show stochastic states at every power-up. Since the feedback
loop in SRAM is controlled only by process variations, if the two feedback loops show enough
similarity, the noises result in an output bit flip. To sum up, SRAM PUF is applicable to either
generating reliable secure keys (reliability and uniqueness requirement) or providing random
entropy to the device (randomness requirement) [12]. Thus, most SRAM-based PUFs are
implemented with proper corrections.

FFFF FFFF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Galois LFSR

FF FF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Fibonacci LFSR

(a)

(b)

VL VR 50%VL

50%

VR

V = V’+

K*noise

VDD

R

VDD

R
S3 S3

S1

S2

S1

S2

Clk

Driver

ES

Latch
Sense

Circuit

Clk1

Clk2

S1

S2

S3

SEN

Entropy source (ES)

ES1 ES1 ES1 ES1

RAW bit
VN8W

Full Entropy

Bitstreams

(a) (b)

VGL VGR

A B
Vth

Word

Line

Bit Line

Q

Bit Line

Q

Stable“1”

Random state

Stable“0”

Figure 18. SRAM PUF block.

FFFF FFFF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Galois LFSR

FF FF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Fibonacci LFSR

(a)

(b)

VL VR 50%VL

50%

VR

V = V’+

K*noise

VDD

R

VDD

R
S3 S3

S1

S2

S1

S2

Clk

Driver

ES

Latch
Sense

Circuit

Clk1

Clk2

S1

S2

S3

SEN

Entropy source (ES)

ES1 ES1 ES1 ES1

RAW bit
VN8W

Full Entropy

Bitstreams

(a) (b)

VGL VGR

A B
Vth

Word

Line

Bit Line

Q

Bit Line

Q

Figure 19. SRAM cell. The Vth mismatch results in the SRAM powering up in either a logic “0” (A = 0,
B = 1) or logic “1” (A = 1, B = 0).

In [86], to improve the stability of responses in SRAM PUF, PMOS is added as an SRAM
power switch to guarantee an ns-level Tramp (the time it takes for VDDs to increase from zero
to a supply voltage VDD) of SRAM cell, which can decrease the power-up time and drop the
probability of bit flips. When the chip is powered on, the SRAM power switch is turned on by
default. Then, the power on SRAM values is labeled as RA. When VDD is stable, they turn off
the SRAM power switch and reboot the SRAM after a time of Tsleep. With an ns-level Tramp,
the VDD of SRAM rapidly increases from zero, and the power-up value is represented as RP.
The RP achieves a worst-case BER of 5.35% at 1.5 V core VDD, 85 °C, and a Tramp < 1 ns with
these actions. Under the same conditions, the RA has a worst-case BER of 13.4%, which is
significantly higher.

Entropy 2022, 24, 1566 20 of 39

4.1.2. Strong PUF

A. Arbiter PUF
An arbiter PUF (APUF) is a delay-based strong PUF that has a race condition be-

tween two symmetrical digital paths. Each delay stage contains two multiplexors that are
controlled by challenges (C0 ∼ Cn−1) shown in Figure 20.

FFFF FFFF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Galois LFSR

FF FF FF FF

g3g3g2g2g1g1g0g0 gngn

clk

Fibonacci LFSR

(a)

(b)

FFFF

M
U

X
M

U
X

P

C

Previous

Next

Current

0

PASS/Capture

0

0

0

1

(b)(a)

AC

R30

All-zero detector

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

AC

R30

All-zero detector

FFFF
Out

8bits

Pass/Capture

Set

(c)

PUF
Challenge Response

R = f(C)

C0C0 C1 C2 Cn-1

EN

A
rb

it
e
r

Response

Figure 20. The basic APUF.

When it begins to work, after a trigger signal is activated, the trigger signal is driven
on two paths that are determined by a pre-input challenge and end in an arbiter, who
determines which of the two paths is faster to generate the binary response that fits the
black-box model (R = f (C)). APUFs can be efficiently implemented in application-specific
integrated circuits (ASICs) and FPGAs [82,87].

B. Other representative strong PUF
Generally, the PUF, whose response is dependent on all entropy source units, is easy

to guarantee a large number of CRPs and constitute a strong PUF [93–95]. In the case of
APUF, the 1-bit response is defined by all the delay units. The selection of delay units at
each stage is determined by the challenges (C0 ∼ Cn−1). Thus, the race result at the final
arbiter is the integral over the delay time of all challenge-affected paths. Because all delay
units affect the 1-bit response at the same time, the CRP space of an N-stage APUF is 2n.

The essence of signal racing is the comparison of voltages at a given moment. In
terms of voltage comparison, Venkatesh et al. present a subthreshold voltage-divider-based
strong PUF in [88], which is shown in Figure 21. The arrangement of the voltage divider is
similar to an APUF. The challenge inputs, C0 through Cn−1, determine which of the N unit
PUF cells in both arrays are connected to the differential inputs of a comparator. A 1-bit
response is generated by comparing the drain voltage of two symmetrical voltage dividers.
V1 and V2 are controlled by challenges. It is a strong PUF with a 2n CRP space.

VDD

VB

C0

VDD

VB

C0

VDD

VB

C1

VDD

VB

C1

VDD

VB

Cn-1

VDD

VB

Cn-1

VDD

VB

C0

VDD

VB

C0

VDD

VB

C1

VDD

VB

C1

VDD

VB

Cn-1

VDD

VB

Cn-1 Majority

Voting

Response

Unit cell

Figure 21. The subthreshold voltage-divider-based strong PUF.

Entropy 2022, 24, 1566 21 of 39

4.2. Risks and Attacks

As PUFs are proposed for authentication and key generation, reproducibility and
robustness should be ensured. PUFs, however, are vulnerable to some attacks.

4.2.1. Working Conditions

PUFs are sensitive to working conditions, especially temperature and voltage. The
BER gradually increases as temperature and voltage shift away from the reference state. For
example, the RO-based PUFs compare the frequency of challenge selected ROs to generate
a response bit. The frequency of challenge selected ROs will vary due to temperature
sweep, which may result in an error bit (shown as Figure 22).

(a) stable

F
re

q
u
e

n
c
y

t1 t2

stable

F
re

q
u
e

n
c
y

t1 t2

f1

f2

unstable
F

re
q

u
e

n
c
y

t1 t2

f1

f2

unstable
F

re
q

u
e

n
c
y

t1 t2

f1

f2

(b)

Figure 22. If the oscillation frequencies of the two selected ROs have a large difference in temperature
sensitivity, a response bit flip can occur.

To be resistant to temperature variations, ROs are designed to be robust to temperature
in [84]. The regular inverters of the ROs are replaced by current-starved (CS) inverters to
improve the reliability of the PUF. By leveraging on the extra gate biasing of the CS inverter
to control its drain current, an optimal bias is determined to account for the counteracting
effects of temperature and supply voltage on RO frequency. Even in the worst case, the
reliability is still above 94%.

4.2.2. Silicon Aging

The quality of PUFs suffers from several noticeable degradations and hard faults due
to silicon aging [96]. These degradations and faults cannot be rectified, and they make
a PUF chip unreliable to use. In order to explore the real effect of aging and eliminate
the interference of dynamic entropy, an extremely mass of CRPs should be collected
multiple times, and their BER should be measured. For example, in [97], each SRAM PUF
chip was read out around 11 million times, and 16 devices were tested. Through long-
time miscellaneous measurements, the reliability of SRAM PUF worsens within a limited
boundary due to the aging effect, whose BER increases by about 0.74% each month over a
2-year period. The proportion of stable PUF bits decreased from 85.9% to 83.7%. Mohd
et al. also demonstrated that the reliability of TCO-PUF [98] and arbiter-PUF degrades
by about 4.5% and 2.41%, respectively, after 10 years, while RO-PUFs and SRAM-PUFs
degrade by about 12.76% in 10 years and 7% in 4.5 years, respectively [99].

Additionally, the reliability of some PUFs can be enhanced by accelerating aging. For
instance, the reliability of SRAM PUF can be improved by increasing the magnitude of
the difference in the threshold voltages of the two PMOS devices in the cross-coupled
inverters [100,101]. The effect is shown in the Figure 23.

Entropy 2022, 24, 1566 22 of 39

Accelerated

Aging

Figure 23. An example of SRAM PUF that improves reliability against aging by pre-aging.

4.2.3. Modeling Attack

Weak PUFs have a limited number of CRPs, which limits their use mainly to random
key generation, and their challenge–response interfaces are usually obfuscated to prevent
direct access to exhaustively rebuilding the CRPs for playback or spoofing attack. Strong
PUFs have an exponential number of CRPs which cannot be exhaustively measured within
a reasonable time, which makes them well suited for IoT device authentication [102]. Due
to the large CRP space, high response reproducibility to the same challenge under varying
operational conditions after device manufacturing is harder to achieve, and modeling
attack by machine learner becomes feasible. It may be hard for a strong PUF design to resist
a machine learning attack merely by sophisticated design alone without considering the
nature of data science.

For a simple 64-bit APUF, the ML algorithm can predict the response with a high
accuracy of 95% when the training data only contain 640 CRPs, while 18,050 CRPs are
needed to achieve a high accuracy of 99.9%. Take the BER of PUF itself into consideration.
It is demonstrated that the arbiter PUF can be learned efficiently [103].

Numerous variations of APUF have been proposed to resist ML attacks. Unfortunately,
most of these designs failed in the new attacks [104]. Moreover, Ahmad et al. presented a
new machine learning procedure for attacking the XOR arbiter PUF. In their design, smaller
training datasets are needed and achieve a higher efficiency for large XOR PUFs [105]. In
other words, it is possible to attack a strong PUF successfully that relies merely on static
obfuscation.

To thwart machine learning attacks, designers must deal with how deep learning
networks work. There are several solutions to be considered:

• Do not give it enough data for training. Very sophisticated deep learning is very
powerful against very complex design modeling. However, it requires a lot of data
to obtain an accurate prediction. For authentication, if the mechanism generates a
response only once or a few times, it is acceptable, even if the response is very slow in
many applications. For attackers, it may end up taking years to collect the training
data. “SHIC PUF” deliberately and significantly slows down the response generation
time from the input of a challenge to lengthen the time required to collect the response
by the attacker [106].

• Contaminate the data accessible by the attackers. There are some design ideas that
poison the response data collected by the attackers, and the legitimate user knows
how to differentiate the true and fake responses [107]. In [108], by adding some extra
models, such as PRNG and a fake PUF, an active deception protocol was guaranteed
to prevent ML attacks.

• Make use of dynamic characteristics/parameters. If the CRP space can change with
dynamic characteristics or parameters (time, e.g.), then even if the attacker can build a
successful model from previously collected CRPs, it will not be useful for breaking the
same PUF after its CRPs have been refreshed.

Entropy 2022, 24, 1566 23 of 39

4.2.4. Side Channel Attack on PUFs

SCAs are powerful non-invasive attacks. Mahmoud et al. proposed the first side-
channel boosted ML attack on XOR-based PUFs [109]. When the PUF is initialized such
that the inputs to the XOR gate are all zeros, and the total power trace is measured. Because
no two paths are exactly the same, a unique glitch in the power trace can be measured
when an APUF response switches from “0” to “1”. Thus, APUFs with a response of “1” can
be extracted.

SCAs are combined with ML methods to achieve a reduction in the size of training data
and attack time. In [110], an optimized attack is discussed, which includes weight vector
estimation based on linear programming and generating new CRPs using the cutting-plane
method. By implementing the attack with SCA in [109], the simulation results show an
extensive reduction in attack complexity compared with previously proposed ML-based
attacks. It achieves an average reduction of 66% in attack time.

5. TRNG-PUF United Design

Since the entropy sources of traditional TRNGs and PUFs are different, TRNGs and
PUFs are individually designed in different modules or chips. However, it is expected to
have both hardware security primitives (TRNG and PUF) in a single chip to strengthen the
security of security applications [111,112]. Furthermore, the constrained resources in IoT
devices have led to the unified designs of secure cores, such as ADC-based TRNG/PUF
and SRAM-based TRNG/PUF. There are a few PUF and TRNG unified designs reported in
the literature [5,113–115] which is a new trend in entropy harvest designs.

SRAMs are widely used as PUFs and TRNGs in commercial chips due to their ubiq-
uitous availability, but the quality of existing SRAM-based TRNGs is limited due to the
limited amount of entropy [12,116]. In [113], Sachin et al. proposed an SRAM with unified
TRNG and multibit PUF for complete in-memory dynamic and static entropy generation
method as shown in Figure 24. In this design, two categories of TDCs are connected to
the bitline and trace the bit changes. The random behavior of the SRAM bitline discharge
rate, which is caused by electronical noises, is used to produce TRNG. A 4-bit RO-based
TDC is utilized as the entropy extractor. When PUF bits are asked, two bitlines are racing
at bit change speed. The static entropy is harvested by the 2-bit TDC, which is similar to
an arbiter.

In [113], the TRNG digital output is generated by digitizing the jittered bitline dis-
charge time due to leakage via the RO-based TDC. When the SRAM data are changed from
“0” to “1”, the EN is driven by a skewed inverter pair during the bitline voltage crosses
60% to 40% of VDD. The time of the jittered bitline voltage crossing the pulse window is
converted to the RO-based TDC output, where the 4-bit LSBs are used as random num-
ber bits. The power source Vtune is reconfigurable, which adjusts the frequency of RO to
maintain the average count at the intended target within a threshold. As for PUF, the
multi-bit static entropy per PUF bitcell is obtained by digitizing the bitline discharge time
difference. Suppose the discharge times of bitline0 and bitline1 are t0 and t1, respectively.
PUF bit0 is generated by a direct comparison between t0 − t1 with 0. PUF bit1 is generated
by comparing t0 − t1 with a (tp/tn) delay.

In [5], the PUF and TRNG are implemented by analog current-steering DAC and
voltage-controlled-oscillator (VCO) devices, shown in Figure 25.

Entropy 2022, 24, 1566 24 of 39

Column MUX (2:1)

Bit Line 1 Bit Line 2

2-bit

TDC

PUF OUT

2-bit

A

Vref

clk

C
o

n
v
e
n

ti
o

n
a
l

S
R

A
M

SRAM

OUT

B

Gated ring oscillator +

counter enabled in

window tw

TRNG OUT 4-bit LSBs

60% 40%

D

Q

Q
1

EN

PG

P
G

 e
li
m

in
a
te

s

s
h

o
rt

 c
ir

c
u

it

c
u

rr
e
n

t

skewed inverter pair:

EN= 1 at 60% crossing,

EN back to 0 at 40%

jittered/random time

window tw

skewed inverter pair:

EN= 1 at 60% crossing,

EN back to 0 at 40%

jittered/random time

window tw

tw

(c)

D Q

E

D Q

E

=
D

E

QD

E

QD

E

Q

D Q

E

=
D

E

Q

AB

PUF[0]

DE

Q
DE

Q
DE

Q

AB

PUF[0]

DE

Q

D

E

QD

E

QD

E

Q

D

E

QD

E

QD

E

Q

A

B

B

A

PUF[1]
D

E

Q

D

E

Q

A

B

B

A

PUF[1]

|tn| delay

|tp| delay

EN

Vtune

Uniform TRNG OUT

EN

Vtune

Uniform TRNG OUT

(b)

(a)

Figure 24. In-memory unified TRNG and multi-Bit PUF. (a) The core circuit design of unified TRNG
and PUF, (b) random number generation by RO-based TDC, and (c) 2-bit TDC for PUF generation.

Two DACs are initialized symmetrically to provide the working current of two iden-
tical VCOs. Each DAC output is quantized by a ring VCO. An XOR-based subtractor
extracts the difference between the quantized phase outputs of the two VCOs, which is
the key method to harvesting both dynamic and static entropy. The deterministic and
periodic phase difference of the DAC-controlled VCOs is the static entropy source, while
the electronic noises and jitter are extracted as the dynamic entropy source. If there were
no mismatches between two symmetrically set DACs, both VCOs would run at the same
frequency, and the quantized output would be zero. The frequency of VCO can be written
as fvco = kvco ∗ vin, where the vin is output voltage of DAC and kvco is VCO’s tuning gain.
Due to the mismatch in the current sources, the sampled phase difference between the two
VCOs is

φ[n] =mod(2πkvco(1 + ∆kvco)vin(1 + ∆vin)nTs

− 2πkvcovinnTs, 2π)

≈mod(2π fvconTs(∆kvco + ∆vin), 2π)

(17)

where Ts is the sampling period, kvco is the fractional random mismatch in VCO gain,
and kin is the fractional random mismatch in DAC output voltage. φ[n] is a deterministic,
repeatable and periodic signal which depends on the mismatch between the DACs, which

Entropy 2022, 24, 1566 25 of 39

is the static entropy source. Thus, the static entropy module is established to create a weak
PUF by sampling φ[n], whose most significant bit (MSB) is used as the PUF bit. In the
presence of noise and jitter, the LSBs of the summation in the subtractor vary dynamically
with time, where the dynamic entropy can be harvested. By running the VCO for a long
time, long PUF and TRNG bitstreams can be generated. Yet, the length of PUF is limited to
avoid temporal correlation.

C1 C2 C8

Vbp1

Vbp2 Ib1

Vbn1

Vbn2

Ib2

VA

C1 C2 C8

Vbp1

Vbp2 Ib1

Vbn1

Vbn2

Ib2

VB

EN

EN

VCOA

VCOB

S
u

m
m

a
ti

o
n

CLK

OUT

[2:0]

PUF{OUT[2]}

TRNG{OUT[0]}

Figure 25. Unified analog PUF and TRNG based on current-steering DAC and VCO.

A review of silicon-based TRNG/PUF designs is shown in Table 4. Among all of
these designs [5,113–115], the unified implementations of TRNG and PUF demonstrated to
reduce the integration effort, cost, and area.

Entropy 2022, 24, 1566 26 of 39

Table 4. Performance comparison of the state-of-the-art TRNG/PUF unified design implementations.

Design Technology
Entropy Type Throughput (Mbps)

Robusness Advantage
TRNG PUF TRNG PUF

[5]
65 nm

Electronic noise Oscillator 100
Injection attack High speed,

DAC & ML attack Lightweight,
VCO resistance Better Robustness

[113]
28 nm

Jitter based
Current

4.5 12,616
Visual attack High speed,

SRAM mismatch resistance High area
TDC efficiency

[114] 3D NbOx array Thermal noise
Current

NA
Injection attack

High reliabilitymismatch resistance

[115] FPGA Jitter based Oscillator 12.5 PVT variations Lightweight,
DD-cell resistance All digital

6. Applications

As the promising hardware security, the research interest in PUF and TRNG has been
increasing year by year, triggering a wave of research upsurge in the emerging field of
IoT. TRNGs are essential in many applications, such as communication systems, statistical
sampling, computer simulation, and cryptography. The unpredictable and aperiodic output
of TRNG enables it to provide continuous random numbers for application scenarios,
such as gambling, long-term key generation, secure seeding of hybrid random number
generators, random number generation against side-channel attacks and replay attacks,
etc. As an emerging lightweight hardware security primitive, PUF has the advantages
of low power consumption, fast response registration, and low measurement cost, and
shows excellent potential in encryption key generation and device identification and
authentication applications.

6.1. The Applications of Random Numbers in Cryptography

The main uses of random numbers in cryptography are generating nonce, salt, initia-
tion vector, and key (symmetric key or asymmetric key) [117].

6.1.1. Nonce Generation

The nonce is the abbreviation of the number once. As the name implies, a random
number that can only be used once in cryptography is called a nonce. That is, once the
random number is applied, it becomes invalid and cannot be used again. A nonce can be
generated whether it is a PRNG or a TRNG, and its primary function is to prevent replay
attacks. In the authentication protocol or data encryption transmission system, the nonce
will be used as seed data and a seed vector to participate in identification or data validity
judgment.

As shown in Figure 26, in the identity authentication system based on the symmetric
algorithm, after system A generates the nonce as the authentication initiator, it sends the
nonce to the unknown identity system B. Then, system B uses the authentication key
to encrypt the nonce and returns the obtained ciphertext C to system A. Finally, system
A uses the same authentication key to encrypt the nonce to generate ciphertext D and
judges whether the identity of system B is legal by comparing the values of C and D. The
role of the nonce is critical; if the value of the nonce is fixed, it means that the ciphertext
C is unchanged. In this way, the attacker can intercept the authentication ciphertext C
by monitoring. Every time system A initiates authentication, the attacker returns the
fixed ciphertext C to system A to forge the real identity. This method is called the replay
attack [118].

Entropy 2022, 24, 1566 27 of 39

System A

Ciphertext
D

System B

Ciphertext
C

nonce

authentication key
encryption

authentication key
encryption

compare

Figure 26. Noce-based symmetric identity authentication system and its potential replay attack
model.

In a data encryption transmission system, such as a recharge system, some data play a
significant role, such as account recharge information. If the nonce remains unchanged or
changes regularly, the generated recharge instruction will not alter or change periodically,
then the attacker can replay it through the line and can forge the recharge information to
complete the illegal recharge operation on the account. Xu et al. [119] introduced a system
that can recover IoT devices in a short period of time. This architecture uses TRNG as an
entropy source to generate an attacker’s unpredictable nonce, thus resisting replay attacks
and enhancing the security of the system.

6.1.2. Salt Generation

In cryptography, salts are random data that are used as an additional input to a one-
way function that hashes data, passwords or passphrases. Salts are used to safeguard
passwords in storage. Historically, a password was stored in plaintext on a system, but over
time, additional safeguards were developed to protect a user’s password against being read
from the system. Salt is one of those methods. Figure 27 shows the process of adding salt
hash to save the password. When the user registers, the user needs to provide the password
(and other user information), and then the system uses the random number to generate a
salt value for the user. The system connects the salt value and the user’s password together,
hashes the connected value to obtain the hash value, and then puts the hash value and the
salt value into the database separately. When the user logs in, the user provides the user’s
name and password, and the system finds the corresponding hash value and salt value
through the user’s name. Similarly, the system connects the salt value with the password
provided by the user, hashes the connected value to obtain the hash’, and confirms whether
the password is correct by comparing whether the hash and hash’ are equal.

Salts defend against a pre-computed hash attack, e.g., rainbow tables [120]. Since salts
do not have to be memorized by humans, they can make the size of the hash table required
for a successful attack prohibitively large without placing a burden on the users. In this
way, cracking becomes prohibitively expensive for hackers using rainbow table attacks,
and similarly, brute-force cracking becomes unlikely. If you need to achieve a higher level
of security, you can use a CPU-consuming hash algorithm to combat brute force cracking,
such as password-based key derivation function 2 (PBKDF2). Ali et al. [121] discussed
encryption and decryption of the dam data using the AES algorithm with derived keys
via the PBKDF2 and RNG sequences generator and slave key for salting protection. They
propose a derived key based on the AES algorithm plus 256 bits. The encryption result is
combined with the dynamic random salt value generated by the RNG sequence generator
and protected by the slave key, thus improving the security of the management system.

Entropy 2022, 24, 1566 28 of 39

Figure 27. Salt + hash prevents brute force cracking to protect data security.

6.1.3. Initialization Vector Generation

The random number generation initialization vector (IV) is mainly used in the cipher
book chaining (CBC), cipher feed back (CFB), and output feed back (OFB) modes of block
ciphers [122,123]. Taking CBC as an example, the advantage of this mode is that the
plaintext information structure is well hidden, and there are nested associations between
all levels of packet data. As shown in Figure 28, the first plaintext data block of this mode
needs to be XORed with the IV, which can be a fixed value or random value. However,
most developers or protocol specifications choose to use random IV because under the
premise that the plaintext is fixed, the random IV will make the first plaintext data block
a random variable, thus making each ciphertext generated by subsequent operations
randomly changing. If a random IV is generated before each encryption, for the same
data, the ciphertext of each encryption changes randomly. In this way, the difficulty and
cost of cracking are significantly increased, which dramatically increases the strength of
data security.

Entropy 2022, 24, 1566 29 of 39

IV plaintext block 0

XOR

encryption

ciphertext block 0

key

plaintext block 1

XOR

encryption

ciphertext block 1

key

encryption

key

ciphertext block 0

decryption

XOR

plaintext block 0IV

ciphertext block1

decryption

XOR

plaintext block 1

key

decryption

Figure 28. The encryption and decryption process of the first plaintext XOR with IV in CBC mode.

Al Zain et al. [124] proposed a block-based cipher scheme that uses a two-dimensional
discretized chaos standard map (CSM) for encryption in three operating modes: electronic
code book (ECB), OFB, and CBC. In the proposed 2D discrete CSM with OFB and CBC, the
IV is used as the master key, where the IV is randomly generated to resist various types of
brute force attacks. The proposed 2D discrete CSM with OFB and CBC is compared with
the 2D discrete CSM with ECB. The results show that the 2D discrete CSM based on OFB
and CBC has higher security than ECB from a cryptographic point of view.

6.1.4. Dynamic Key Generation

In the symmetric encryption algorithm system, the one-time valid key has a critical
application, called the dynamic random key, in some applications. A new key is agreed
upon before each interaction between the two parties, and then the key is used for channel
encryption and other processing. The significance of the dynamic random key is that the
keys used by both parties change every time they communicate, and the cracker can only
crack one of the historical keys but cannot break the entire system. Therefore, the cracking
cost can be increased, and the security risk can be reduced. At the same time, the dynamic
random key can effectively prevent line replay attacks because the key changes every time,
so the same ciphertext cannot be restored to the same plaintext, and vice versa. This means
that the key generation needs to be random. Take a counter as an example: if the dynamic
key is regular, then as long as one key is cracked, other keys can be restored after analysis.
Therefore, the randomness of the key must be guaranteed to be truly secure.

Nowadays, more and more designers use a security chip with TRNG to generate
random numbers and use the random numbers directly as keys or as a seed for generating
keys. In [125], the true random number generator-pseudo random number generator
(TRNG-PRNG) module is used to generate keys randomly. Therefore, in the process
of encryption and decryption, the key value is difficult to be used by unauthenticated
users (i.e., malicious attackers), thus improving the robustness of the architecture against
malicious attackers. Figure 29 is a typical random number generator application inside a
safety controller. The random number is used to generate a dynamic key to dynamically
encrypt the data bus and peripheral registers so that the encrypted data transmission is
realized between the CPU and the peripheral, and there is no plaintext in the whole process.
Therefore, high-quality random numbers play an essential role in information security

Entropy 2022, 24, 1566 30 of 39

systems. If the randomness of random numbers is not secure enough, the entire system is
very likely to be broken by attackers.

Sp
ecial Fu

n
ctio

n

R
e

giste
r

En
cryp

tio
n

cryptographic
coprocessor 1

cryptographic
coprocessor 1

random number
generator 1

random number
generator 2

Special Function
Register

Encryption

Special Function
Register

Encryption

Special Function
Register

Encryption

Random
Number

Generator

controlKey Key

CPU

dynamic key
generation

dynamic key
generation

Figure 29. Random numbers generate dynamic key for dynamic encryption of peripheral bus.

6.2. Low-Cost Authentication

There are two main applications of PUFs: low-cost authentication and secure key
generation. Strong PUFs are typically used for authentication, while weak PUFs are used
for key storage. This subsection introduces the application of PUF in low-cost authentica-
tion, and the application of PUF in secure key generation will be introduced in the next
subsection.

6.2.1. PUF-Based Authentication Protocol

Authentication is the process between a user and a verifier who uses corroborative
evidence to confirm the identity of the user [126]. Since PUFs do not require secure non-
volatile memory, anti-tamper circuits, or additional support for cryptographic acceleration
hardware, PUF-based solutions require less area, power, and masking layers than tradi-
tional secure authentication methods. The simplest form of a PUF-based authentication
protocol proceeds in two phases: registration and authentication, as shown in Figure 30.
During the registration (which happens in a secure facility), when the trusted party has a
real PUF device A, a small subset of possible challenges is randomly selected and applied to
the PUF to generate a corresponding set of responses. The CRP for each token is recorded
by the server in a secure database for future authentication. The amount of CRP stored per
token can be relatively small since the large CRP space for strong PUFs and the secrecy of
the selected subset make it difficult for an adversary to construct a clone to impersonate the
token. During the verification phase, the server side selects a challenge that was previously
recorded but never used for the authentication operation, and obtains a PUF response from
chip A. If the response matches (i.e., is close enough) to a previously recorded response, the
PUF device is real.

Entropy 2022, 24, 1566 31 of 39

Enrollment Phase

PUF
Device A

Challenge-Response Pair(CRP)

Server

resp
o

n
se

ch
al

le
n

ge

Verification Phase

Untrusted Network

PUF
Device A

Is this Device A?

challenge response

Figure 30. PUF-based authentication [16].

There are a few recent research works aiming at developing PUF-based authentication
protocols for the IoT. Chaterjee et al. [127] proposed a private PUF-based anonymous au-
thentication protocol named 3PAA. The protocol allows users to anonymously authenticate
the application provider (AP) k times through a trusted party without revealing the CRP.
This makes the system more resilient to PUF modeling attacks. However, the protocol
only allows the application provider to verify the authenticity of the user, but the user
cannot verify that he/she is communicating with a legitimate application provider rather
than an attacker. Therefore, once the AP is compromised, the security of this protocol
is broken. Lounis et al. [128] proposed a novel lightweight T2T mutual authentication
protocol (T2T-MAP) based on PUFs. Similar to other PUF-based authentication protocols,
T2T-MAP also consists of an enrollment phase and a verification phase, but it is worth
noting that in addition to performing authentication, T2T-MAP also allows the establish-
ment of a symmetric cryptographic encryption between two transaction keys. The ability
of T2T-MAP to prevent CRP leakage and resist attacks, such as machine learning and node
sabotage, is stronger. In addition, the protocol also features fast authentication, reasonable
communication overhead, and low energy consumption, thus achieving the characteristics
of being retractable, lightweight, fast, and efficient.

6.2.2. Privacy Preserving Mutual Authentication

Traditional PUF-based authentication protocol schemes risk exposing secret IDs to
machine learning-based side-channel attacks that can successfully clone PUFs by analyzing
thousands of challenge-response behaviors [87,129,130]. In addition, this scheme requires
additional infrastructure, and the IoT remote needs to verify server credentials before
outputting a response using PUF. Furthermore, each authentication routine in traditional
PUF-based protocols uses a new set of challenges, which causes the channel response log
to be gradually exhausted, and eventually, the product can only be retired early or recalled
for new registration.

Privacy-preserving mutual authentication (PPMA) is a recently proposed scheme. It is
an authentication protocol based on the TRNG/PUF architecture. During the authentication
process, the nonce generated by TRNG masks the PUF response, confusing the information
exchange and replacing the traditional PUF-based authentication protocol [131]. PPMA
allows the reuse of challenge–response pairs, while significantly reducing the likelihood
of secret leakage. In this scheme, the server encrypts the PUF challenge with a random
value R1 generated by the TRNG before sending it, as shown in Figure 31. Subsequently,
in the following authentication stage, the IoT mote (short for remote, a mote is a wireless

Entropy 2022, 24, 1566 32 of 39

transceiver that also acts as a remote sensor) decrypts the challenge and creates a new
random value R1 + R2 by combining the decrypted R1 and its own locally generated
random number R2. After this, the IoT mote encrypts the PUF response with R2 and
R1 + R2, respectively, before sending it back to the server over the insecure channel. The
server uses this pair of encrypted responses to obtain a random value R1. If the R1 obtained
from the decrypted response is equal to the random value generated by the original TRNG,
then the authentication process is completed. Compared to traditional schemes where the
attacker has access to the initial challenge–response value, PPMA only has access to the
encrypted version, significantly reducing the scope of side-channel attacks. In addition,
using a pair of random tweaks generated by IoT edge devices and servers improves
resilience to replay attacks. This symmetrical use of random value R1 and R2 on both sides
of the server and IoT mote makes mutual verification possible.

Enrolled PUF values

Mote1 PUF1

Mote2 PUF2

Mote3 PUF3

Moten PUFn

...Server

Encrypt

TRNG

Decrypt

R1 = R1 ?

R1

R1

R2

R1 + R2

A
u

th
e

n
ti

ca
te

d

Not AuthenticatedNY

PUF1

TRNG

IoT Mote

En
cr

yp
t

D
ec

ry
p

t

Challenge

Response

Challenge = Enc(R1,PUF1)
Response = Enc(R1 + R2,PUF1),
 Enc(R2,PUF1)

R1

R2

Figure 31. PPMA protocol.

6.3. Secure Key Generation

IoT devices with limited resources provide a challenging environment for establishing
privacy and security protection mechanisms. While various cryptographic algorithms can
be devised to address the above challenges, all these measures ultimately rely on securely
maintained keys. Because of its limited challenge–response space, weak PUF architectures
are frequently used to generate encryption keys and create passwords in communications
and digital signatures to protect systems [10]. However, due to the effects of noise and
altering environmental conditions, even on the same IC with the same challenge, there is no
guarantee that the output of each evaluation will be the same [132]. In addition, in contrast
to cryptographic primitives, such as RSA, which use keys to satisfy certain mathematical
properties, the PUF output is randomly determined by manufacturing variables. Therefore,
the output of the PUF is not appropriate as an encryption key directly. PUF generates a
key that can be used for encryption operations, which consists of two parts: initialization
and regeneration. The entire process is shown in Figure 32. Firstly, the error correcting
code (ECC), consisting of initialization and regeneration, ensures that the PUF continues
to generate stable output, even under significant environmental changes such as voltage
and temperature fluctuations. Second, the key generation process converts the PUF output
into an encryption key. For encryption operations that use a randomly selected number
as the key, the output of the ECC can simply be hashed to the desired length and used as
the encryption key. The hashed PUF output can be used as symmetric key for algorithms
such as AES. In the initialization step, the PUF circuit generates an output, and the error
correction syndrome of this output is calculated (e.g., the BCH code can be used to calculate
the syndrome), which is the information that allows correction of bit-flips in the regenerated
PUF output. To reproduce the same PUF output, the PUF circuit first generates the output.

Entropy 2022, 24, 1566 33 of 39

If there is a saved bit vector, it is used to select the pair. The PUF then uses the syndrome
from the initialization step to correct for changes in the circuit output. In this way, the PUF
can reproduce the output of the initialization step.

PUF Circuit

ECC
Encoding

PUF Circuit
ECC

Decoding
Hash

Key Generation

Syndrome (public information)

n

n-k
n-k

key

Initialization Re-genneration

n n

k

Figure 32. Secure key generation with PUF [10].

The PUF with key generation capability can be tightly integrated with a processor, en-
abling a physically secure processor [133]. Due to various model-building attacks [134,135],
it is now recognized that it is difficult to provide security guarantees for simple challenge–
response-based lightweight authentication protocols built on strong PUFs. One way to
thwart modeling attacks is to limit the number of exposed CRPs by limiting the number
of authentication rounds. The price of this is that PUFs must be destroyed once a pre-
determined number of authentication rounds is reached [136]. A recent study of strong
PUF-based authentication mechanisms concluded that PUF-based secure authentication
mechanisms are best constructed from PUF-derived keys [137]. In [138], a PUF-based mu-
tual authentication protocol was proposed, which uses PUF-generated keys to authenticate
IoT devices while avoiding key storage using dynamic keys.

In addition, PUF can also provide password keys for security authentication protocols
based on cryptographic algorithms to authenticate IoT devices. Miguel et al. [139] described
a novel anti-counterfeiting approach for IoT devices, using the unique characteristics of
memory chips to derive a cryptographic secret combined with a blockchain for trusted
and reliable verification of device identities. They proposed using an SRAM-based PUF to
generate cryptographic keys that are employed in a zero-knowledge proof to authenticate
an IoT device. In this way, even low-cost devices can sign messages by using PUF-derived
keys, thereby preventing their communication with the blockchain, which makes the
proposal applicable to any device with limited resources connected to the blockchain [140].

7. Conclusions

TRNGs and PUFs are the fundamental primitives to harvest entropy. In this paper,
we highlight the importance of TRNGs and PUFs in information security systems because
modern cryptography highly depends on randomness extraction.

TRNGs using electric circuits have shown wide prospects due to being carried out
on compact electronic chips and thus are worth further investigation.We examine several
techniques for collecting electrical noise acting as trustworthy entropy sources, including
classical noise amplifiers, oscillators, metastability, and chaos. Oscillator- and metastability-
based TRNGs are more portable and easier to implement, while chaos is the most suitable
technique for fast random number generators. Furthermore, on-chip auto-calibration and
entropy assurance are gradually showing their importance to guaranteeing the high entropy
of TRNG.

PUF circuits can produce distinct, confidential information for each circuit. Two cate-
gories of PUFs, strong PUF and weak PUF, are clarified based on the CRP space. Strong PUF
provides enough CRPs but is more threatened by machine learning attacks, which makes

Entropy 2022, 24, 1566 34 of 39

the PUF-based protocol or system more susceptible. Recent research shows that further
investigations are necessary, especially on the concepts of attacks and security analysis.

Recent research shows that the unified design of TRNGs and PUFs is becoming more
popular, which decreases consumption and achieves stronger security for authentication.
However, no strong PUF unified with TRNG structure has been reported, which could be a
promising research field.

We reviewed their designs, the underlying assumptions, and the properties of their
implementations. In addition, examples of information security applications, including
system security and authentication security, are also presented and discussed.

With this review, we hope that the current spots of entropy harvesting are pointed out.

Author Contributions: Methodology, C.W.; project administration, Y.C.; supervision C.W.; funding
acquisition Y.C., C.W. and J.Y.; writing—original draft, W.L. and L.Q.; writing—review and editing
Y.C., C.W., S.C., J.Y., B.L. and X.X. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by National Key R & D Program of China (2019YFB1310001),
National Natural Science Foundation of China (62274056), Key Research and Development Program
of Jiangsu Province (BE2022098), Postdoctoral Science Foundation of Jiangsu Province (2021K605C),
National Natural Science Foundation of China (NSFC) under grant No. (U20A20202), and Youth
Innovation Promotion Association CAS.

Data Availability Statement: Data are available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
2. Vassilev, A.; Hall, T.A. The Importance of Entropy to Information Security. Computer 2014, 47, 78–81. [CrossRef]
3. Chen, T.; Ma, Y.; Lin, J.; Cao, Y.; Lv, N.; Jing, J. A Lightweight Full Entropy TRNG with On-Chip Entropy Assurance. IEEE

Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 2431–2444. [CrossRef]
4. Prada-Delgado, M.A.; Martínez-Gómez, C.; Baturone, I. Auto-Calibrated Ring Oscillator TRNG Based on Jitter Accumulation. In

Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020.
[CrossRef]

5. Danesh, M.; Venkatasubramaniyan, A.B.; Kapoor, G.; Ramesh, N.; Sadasivuni, S.; Chandrasekaran, S.T.; Sanyal, A. Unified Analog
PUF and TRNG Based on Current-Steering DAC and VCO. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 2280–2289.
[CrossRef]

6. Viega, J.; Messier, M. Secure Programming Cookbook for C and C++: Recipes for Cryptography, Authentication, Input Validation & More;
O’Reilly Media: Sebastopol, CA, USA, 2003.

7. Hasan, R.S.; Tawfeeq, S.K.; Mohammed, N.Q.; Khaleel, A.I. A true random number generator based on the photon arrival time
registered in a coincidence window between two single-photon counting modules. Chin. J. Phys. 2018, 56, 385–391. [CrossRef]

8. Abutaleb, M. A novel true random number generator based on QCA nanocomputing. Nano Commun. Netw. 2018, 17, 14–20.
[CrossRef]

9. Barker, E.B.; Kelsey, J.M. Recommendation for Random Number Generation Using Deterministic Random Bit Generators (Revised); US
Department of Commerce, Technology Administration, National Institute of Standards and Technology: Gaithersburg, MD, USA
2007.

10. Suh, G.E.; Devadas, S. Physical Unclonable Functions for Device Authentication and Secret Key Generation. In Proceedings of
the 2007 44th ACM/IEEE Design Automation Conference, San Diego, CA, USA, 4–8 June 2007.

11. Maiti, A.; Casarona, J.; McHale, L.; Schaumont, P. A large scale characterization of RO-PUF. In Proceedings of the 2010 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA, 13–14 June 2010. [CrossRef]

12. Holcomb, D.E.; Burleson, W.P.; Fu, K. Power-Up SRAM State as an Identifying Fingerprint and Source of True Random Numbers.
IEEE Trans. Comput. 2009, 58, 1198–1210. [CrossRef]

13. Li, Z.; Zhu, L.; Huang, M.; Chen, Z.; Chen, S.; Li, B. Racing APUF: A Novel APUF against Machine Learning Attack with High
Reliability. In Proceedings of the 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China,
19–21 July 2019. [CrossRef]

14. Chen, S.; Xiong, W.; Xu, Y.; Li, B.; Szefer, J. Thermal Covert Channels Leveraging Package-on-Package DRAM. In Proceedings
of the 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE
International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, 5–8 August, 2019.
[CrossRef]

http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/MC.2014.47
http://dx.doi.org/10.1109/TCAD.2021.3096464
http://dx.doi.org/10.1109/ISCAS45731.2020.9180598
http://dx.doi.org/10.1109/TVLSI.2020.3011648
http://dx.doi.org/10.1016/j.cjph.2017.11.008
http://dx.doi.org/10.1016/j.nancom.2018.04.001
http://dx.doi.org/10.1109/HST.2010.5513108
http://dx.doi.org/10.1109/TC.2008.212
http://dx.doi.org/10.1109/SIPROCESS.2019.8868387
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2019.00050

Entropy 2022, 24, 1566 35 of 39

15. Yilmaz, Y.; Gunn, S.R.; Halak, B. Lightweight PUF-Based Authentication Protocol for IoT Devices. In Proceedings of the 2018
IEEE 3rd International Verification and Security Workshop (IVSW), Costa Brava, Spain, 2–4 July 2018. [CrossRef]

16. Al-Meer, A.; Al-Kuwari, S. Physical Unclonable Functions (PUF) for IoT Devices. arXiv 2022, arXiv:2205.08587.
17. Mexis, N.; Anagnostopoulos, N.A.; Chen, S.; Bambach, J.; Arul, T.; Katzenbeisser, S. A Lightweight Architecture for Hardware-

Based Security in the Emerging Era of Systems of Systems. Acm J. Emerg. Technol. Comput. Syst. 2021, 17, 1–25. [CrossRef]
18. Chen, S.; Li, B.; Chen, Z.; Zhang, Y.; Wang, C.; Tao, C. Novel Strong-PUF-Based Authentication Protocols Leveraging Shamir’s

Secret Sharing. IEEE Internet Things J. 2021. [CrossRef]
19. Erozan, A.T.; Wang, G.Y.; Bishnoi, R.; Aghassi-Hagmann, J.; Tahoori, M.B. A Compact Low-Voltage True Random Number

Generator Based on Inkjet Printing Technology. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 1485–1495. [CrossRef]
20. Perach, B.; Kvatinsky, S. An Asynchronous and Low-Power True Random Number Generator using STT-MTJ. IEEE Trans. Very

Large Scale Integr. (VLSI) Syst. 2019, 27, 2473–2484. [CrossRef]
21. Gutierrez, S.V. Memristor-based security primitives. In Proceedings of the 2022 IEEE European Test Symposium (ETS), Barcelona,

Spain, 23–27 May 2022; pp. 1–2. [CrossRef]
22. Srinivasu, B.; Chattopadhyay, A. Cycle PUF: A Cycle operator based PUF in Carbon Nanotube FET Technology. In Proceedings

of the 2021 IEEE 21st International Conference on Nanotechnology (NANO), Montreal, QC, Canada, 28–30 July 2021; pp. 13–16.
[CrossRef]

23. Vatajelu, E.I.; Di Natale, G.; Indaco, M.; Prinetto, P. STT MRAM-based PUFs. In Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2015; pp. 872–875. [CrossRef]

24. Yu, B. Tutorial: Information theory and statistics. In Proceedings of the 7th International Conference on Machine Learning and
Applications, San Diego, CA, USA, 30 August–3 September 2011.

25. Caelli, W. Crypt X Package Documentation; Information Security Research Centre and School of Mathematics, Queensland
University of Technology: Brisbane, Australia, 1992.

26. Walker, J. ENT: A Pseudorandom Number Sequence Test Program. Available online: https://www.fourmilab.ch/random/
(accessed on 28 January 2008).

27. L’Ecuyer, P.; Simard, R. TestU01: A C Library for Empirical Testing of Random Number Generators. ACM Trans. Math. Softw.
2007, 33. [CrossRef]

28. Brown, R.G.; Eddelbuettel, D.; Bauer, D. Dieharder: A Random Number Test Suite. 2004. Available online: http://webhome.phy.
duke.edu/~rgb/General/dieharder.php (accessed on 26 September 2022).

29. Bassham, L.E.; Rukhin, A.L.; Soto, J.; Nechvatal, J.R.; Smid, M.E.; Barker, E.B.; Leigh, S.D.; Levenson, M.; Vangel, M.; Banks,
D.L.; et al. SP 800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications. Available online: https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final (accessed on 30 April 2010).

30. Datta, D.; Datta, B.; Dutta, H.S. Design and implementation of multibit LFSR on FPGA to generate pseudorandom sequence
number. In Proceedings of the 2017 Devices for Integrated Circuit (DevIC), Kalyani, India, 23–24 March 2017; pp. 346–349.
[CrossRef]

31. Li, W.; Yang, X. A Parallel and Reconfigurable United Architecture for Fibonacci and Galois LFSR. In Proceedings of the 2015
7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015;
Volume 1, pp. 203–206. [CrossRef]

32. Kiruthiga, S.; Shangeeth, M.; Kumar S.P., R.; Sowndarya, R. LFSR using CDFF and GDI. In Proceedings of the 2020 6th
International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 March 2020;
pp. 595–598. [CrossRef]

33. Oommen, R.; George, M.K.; Joseph, S. Study and Analysis of Various LFSR Architectures. In Proceedings of the 2018 International
Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), Kottayam, India, 21–22 December 2018; pp. 1–6.
[CrossRef]

34. Akhila, N.; Kumari, C.U.; Swathi, K.; Padma, T.; Kora, P. Implementation of Modified Dual-Coupled Linear Congruential
Generator in Data Encryption Standard Algorithm. In Proceedings of the 2021 Third International Conference on Inventive
Research in Computing Applications (ICIRCA), Coimbatore, India, 2–4 September 2021; pp. 490–496. [CrossRef]

35. Akhila, N.; Kumari, C.U.; Swathi, K.; Padma, T.; Rao, N.M. Performance Analysis of Pseudo Random Bit Generator Using
Modified Dual-Coupled Linear Congruential Generator. In Proceedings of the 2021 International Conference on Intelligent
Technologies (CONIT), Hubli, India, 25–27 June 2021; pp. 1–5. [CrossRef]

36. Peng, T.; Xin Yi, X.; Xu, K.; Feng Hu, L. Linear congruential interleaves design for IDMA system. In Proceedings of the 2011 IEEE
13th International Conference on Communication Technology, Jinan, China, 25–28 September 2011; pp. 220–222. [CrossRef]

37. Barker, E.; Kelsey, J. SP 800-90A Rev. 1—Recommendation for Random Number Generation Using Deterministic Random Bit Generators;
Technical Report; NIST: Gaithersburg, MD, USA, 2015.

38. Yao, A.C. Theory and application of trapdoor functions. In Proceedings of the 23rd Annual Symposium on Foundations of
Computer Science (sfcs 1982), Chicago, IL, USA, 3–5 November 1982; pp. 80–91. [CrossRef]

39. Dworkin, M.J. FIPS PUB 202 - SHA3 Standard: Permutation-Based Hash and Extendable-Output Functions. Available online:
https://csrc.nist.gov/publications/detail/fips/202/final (accessed on 4 August 2015).

40. Kumar, A.; Arora, V. Analyzing the performance and security by using SHA3 in WEP. In Proceedings of the 2015 IEEE
International Conference on Engineering and Technology (ICETECH), Coimbatore, India, 20 March 2015; pp. 1–4. [CrossRef]

http://dx.doi.org/10.1109/ivsw.2018.8494884
http://dx.doi.org/10.1145/3458824
http://dx.doi.org/10.1109/JIOT.2021.3065836
http://dx.doi.org/10.1109/TVLSI.2020.2975876
http://dx.doi.org/10.1109/TVLSI.2019.2927816
http://dx.doi.org/10.1109/ETS54262.2022.9810403
http://dx.doi.org/10.1109/NANO51122.2021.9514291
http://dx.doi.org/10.7873/DATE.2015.0505
https://www.fourmilab.ch/random/
http://dx.doi.org/10.1145/1268776.1268777
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
http://dx.doi.org/10.1109/DEVIC.2017.8073966
http://dx.doi.org/10.1109/IHMSC.2015.265
http://dx.doi.org/10.1109/ICACCS48705.2020.9074155
http://dx.doi.org/10.1109/ICCSDET.2018.8821227
http://dx.doi.org/10.1109/ICIRCA51532.2021.9544633
http://dx.doi.org/10.1109/CONIT51480.2021.9498354
http://dx.doi.org/10.1109/ICCT.2011.6157866
http://dx.doi.org/10.1109/SFCS.1982.45
https://csrc.nist.gov/publications/detail/fips/202/final
http://dx.doi.org/10.1109/ICETECH.2015.7275026

Entropy 2022, 24, 1566 36 of 39

41. Deen, M.J.; Marinov, O.; Macucci, M.; Basso, G. Low-Frequency Noise in Electronic Devices—Past, Present and Future. AIP Conf.
Proc. 2009, 1129, 197. [CrossRef]

42. Ioannidis, E.; Haendler, S.; Theodorou, C.; Lasserre, S.; Dimitriadis, C.; Ghibaudo, G. Evolution of low frequency noise and noise
variability through CMOS bulk technology nodes from 0.5 µm down to 20 nm. Solid-State Electron. 2014, 95, 28–31. [CrossRef]

43. Ioannidis, E.G.; Haendler, S.; Bajolet, A.; Rosa, J.; Manceau, J.P.; Dimitriadis, C.A.; Ghibaudo, G. Evolution of low frequency noise
and noise variability through CMOS bulk technology nodes. In Proceedings of the 2013 22nd International Conference on Noise
and Fluctuations (ICNF), Montpellier, France, 24–28 June 2013; pp. 1–4. [CrossRef]

44. Lopez, D.; Haendler, S.; Leyris, C.; Bidal, G.; Ghibaudo, G. Low-Frequency Noise Investigation and Noise Variability Analysis in
High- k/Metal Gate 32-nm CMOS Transistors. IEEE Trans. Electron Devices 2011, 58, 2310–2316. [CrossRef]

45. Stojanovski, T.; Pihl, J.; Kocarev, L. Chaos-based random number generators. Part II: Practical realization. IEEE Trans. Circuits
Syst. Fundam. Theory Appl. 2001, 48, 382–385. [CrossRef]

46. Pareschi, F.; Setti, G.; Rovatti, R. Implementation and Testing of High-Speed CMOS True Random Number Generators Based on
Chaotic Systems. IEEE Trans. Circuits Syst. 2010, 57, 3124–3137. [CrossRef]

47. Kim, M.; Ha, U.; Lee, K.J.; Lee, Y.; Yoo, H.J. A 82-nW Chaotic Map True Random Number Generator Based on a Sub-Ranging
SAR ADC. IEEE J.-Solid-State Circuits 2017, 52, 1953–1965. [CrossRef]

48. Han, L.; Cao, Y.; Qian, L.; Xie, H.; Chang, C.H. An Ultra-Low Power 3-T Chaotic Map based True Random Number Generator.
In Proceedings of the 2021 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Shanghai, China, 16–18
December 2021; pp. 1–6. [CrossRef]

49. Luo, Y.; Wang, W.; Best, S.; Wang, Y.; Xu, X. A High-Performance and Secure TRNG Based on Chaotic Cellular Automata Topology.
IEEE Trans. Circuits Syst. 2020, 67, 4970–4983. [CrossRef]

50. Abidi, A. Phase Noise and Jitter in CMOS Ring Oscillators. IEEE J.-Solid-State Circuits 2006, 41, 1803–1816. [CrossRef]
51. Guler, U.; Dundar, G. Modeling CMOS Ring Oscillator Performance as a Randomness Source. IEEE Trans. Circuits Syst. 2014,

61, 712–724. [CrossRef]
52. Cao, Y.; Chang, C.H.; Zheng, Y.; Zhao, X. An energy-efficient true random number generator based on current starved ring

oscillators. In Proceedings of the 2017 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Beijing, China,
19–20 October 2017; pp. 37–42. [CrossRef]

53. Kumar, D.; Anand, R.; Goswami, M. A 138 Mbps jitter based power efficient true random number generator. In Proceedings of
the 2020 International Conference on Electronics, Information, and Communication (ICEIC), Barcelona, Spain, 19–22 January
2020; pp. 1–5. [CrossRef]

54. Tokunaga, C.; Blaauw, D.; Mudge, T. True Random Number Generator With a Metastability-Based Quality Control. IEEE
J.-Solid-State Circuits 2008, 43, 78–85. [CrossRef]

55. Holleman, J.; Bridges, S.; Otis, B.P.; Diorio, C. A 3 µW CMOS True Random Number Generator With Adaptive Floating-Gate
Offset Cancellation. IEEE J.-Solid-State Circuits 2008, 43, 1324–1336. [CrossRef]

56. Srinivasan, S.; Mathew, S.; Erraguntla, V.; Krishnamurthy, R. A 4Gbps 0.57pJ/bit Process-Voltage-Temperature Variation Tolerant
All-Digital True Random Number Generator in 45 nm CMOS. In Proceedings of the 2009 22nd International Conference on VLSI
Design, New Delhi, India, 5–9 January 2009; pp. 301–306. [CrossRef]

57. Wieczorek, P.Z.; Gołofit, K. Dual-Metastability Time-Competitive True Random Number Generator. IEEE Trans. Circuits Syst.
2014, 61, 134–145. [CrossRef]

58. Petrie, C.; Connelly, J. A noise-based IC random number generator for applications in cryptography. IEEE Trans. Circuits Syst.
Fundam. Theory Appl. 2000, 47, 615–621. [CrossRef]

59. Bae, S.G.; Kim, Y.; Park, Y.; Kim, C. 3-Gb/s High-Speed True Random Number Generator Using Common-Mode Operating
Comparator and Sampling Uncertainty of D Flip-Flop. IEEE J.-Solid-State Circuits 2017, 52, 605–610. [CrossRef]

60. Yang, J.; Ding, Q.; Gong, T.; Luo, Q.; Xue, X.; Gao, Z.; Yu, H.; Yu, J.; Xu, X.; Yuan, P.; et al. Robust True Random Number Generator
using Stochastic Short-Term Recovery of Charge Trapping FinFET for Advanced Hardware Security. In Proceedings of the 2020
IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 16–19 June 2020; pp. 1–2. [CrossRef]

61. Grujić, M.; Verbauwhede, I. TROT: A Three-Edge Ring Oscillator Based True Random Number Generator With Time-to-Digital
Conversion. IEEE Trans. Circuits Syst. 2022, 69, 2435–2448. [CrossRef]

62. Zhang, R.; Wang, X.; Liu, K.; Shinohara, H. A 0.186-pJ per Bit Latch-Based True Random Number Generator Featuring Mismatch
Compensation and Random Noise Enhancement. IEEE J.-Solid-State Circuits 2022, 57, 2498–2508. [CrossRef]

63. Tehranipoor, F.; Wortman, P.; Karimian, N.; Yan, W.; Chandy, J.A. DVFT: A Lightweight Solution for Power-Supply Noise-Based
TRNG Using Dynamic Voltage Feedback Tuning System. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1084–1097.
[CrossRef]

64. Jen, E. Aperiodicity in one-dimensional cellular automata. Phys. Nonlinear Phenom. 1990, 45, 3–18. [CrossRef]
65. Lu, Y.; Liang, H.; Yao, L.; Wang, X.; Qi, H.; Yi, M.; Jiang, C.; Huang, Z. Jitter-Quantizing-Based TRNG Robust Against PVT

Variations. IEEE Access 2020, 8, 108482–108490. [CrossRef]
66. Grujić, M.; Rožić, V.; Yang, B.; Verbauwhede, I. A Closer Look at the Delay-Chain based TRNG. In Proceedings of the 2018 IEEE

International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [CrossRef]
67. Lacharme, P. Post-Processing Functions for a Biased Physical Random Number Generator. In Fast Software Encryption; Springer:

Berlin/Heidelberg, Germany, 2008; pp. 334–342. [CrossRef]

http://dx.doi.org/10.1063/1.3140429
http://dx.doi.org/10.1016/j.sse.2014.03.002
http://dx.doi.org/10.1109/ICNF.2013.6578985
http://dx.doi.org/10.1109/TED.2011.2141139
http://dx.doi.org/10.1109/81.915396
http://dx.doi.org/10.1109/TCSI.2010.2052515
http://dx.doi.org/10.1109/JSSC.2017.2694833
http://dx.doi.org/10.1109/AsianHOST53231.2021.9699781
http://dx.doi.org/10.1109/TCSI.2020.3019030
http://dx.doi.org/10.1109/JSSC.2006.876206
http://dx.doi.org/10.1109/TCSI.2013.2283993
http://dx.doi.org/10.1109/AsianHOST.2017.8353992
http://dx.doi.org/10.1109/ICEIC49074.2020.9152937
http://dx.doi.org/10.1109/JSSC.2007.910965
http://dx.doi.org/10.1109/JSSC.2008.920327
http://dx.doi.org/10.1109/VLSI.Design.2009.69
http://dx.doi.org/10.1109/TCSI.2013.2265952
http://dx.doi.org/10.1109/81.847868
http://dx.doi.org/10.1109/JSSC.2016.2625341
http://dx.doi.org/10.1109/VLSITechnology18217.2020.9265048
http://dx.doi.org/10.1109/TCSI.2022.3158022
http://dx.doi.org/10.1109/JSSC.2021.3137312
http://dx.doi.org/10.1109/TVLSI.2018.2804258
http://dx.doi.org/10.1016/0167-2789(90)90169-P
http://dx.doi.org/10.1109/ACCESS.2020.3000231
http://dx.doi.org/10.1109/ISCAS.2018.8351222
http://dx.doi.org/10.1007/978-3-540-71039-4_21

Entropy 2022, 24, 1566 37 of 39

68. Golic, J. New Methods for Digital Generation and Postprocessing of Random Data. IEEE Trans. Comput. 2006, 55, 1217–1229.
[CrossRef]

69. Shaltiel, R. How to get more mileage from randomness extractors. Random Struct. Algorithms 2008, 33, 157–186. [CrossRef]
70. Li, X.; Cohen, A.B.; Murphy, T.E.; Roy, R. Scalable parallel physical random number generator based on a superluminescent LED.

Opt. Lett. 2011, 36, 1020. [CrossRef] [PubMed]
71. Tkacik, T.E. A Hardware Random Number Generator. In Proceedings of the Cryptographic Hardware and Embedded Systems—

CHES 2002, Redwood Shores, CA, USA, 13–15 August 2002; Springer: Berlin/Heidelberg, Germany, 2003; pp. 450–453. [CrossRef]
72. Von Neumann, J. Various techniques used in connection with random digits. Appl. Math. Ser. 1951, 12, 3.
73. Sunar, B.; Martin, W.J.; Stinson, D.R. A Provably Secure True Random Number Generator with Built-In Tolerance to Active

Attacks. IEEE Trans. Comput. 2007, 56, 109–119. [CrossRef]
74. Bayon, P.; Bossuet, L.; Aubert, A.; Fischer, V. Fault model of electromagnetic attacks targeting ring oscillator-based true random

number generators. J. Cryptogr. Eng. 2016, 6, 61–74. [CrossRef]
75. Gai, K.; Ding, Y.; Wang, A.; Zhu, L.; Choo, K.K.R.; Zhang, Q.; Wang, Z. Attacking the Edge-of-Things: A Physical Attack

Perspective. IEEE Internet Things J. 2022, 9, 5240–5253. [CrossRef]
76. Bayon, P.; Bossuet, L.; Aubert, A.; Fischer, V.; Poucheret, F.; Robisson, B.; Maurine, P. Contactless Electromagnetic Active Attack

on Ring Oscillator Based True Random Number Generator. In Constructive Side-Channel Analysis and Secure Design; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 151–166. [CrossRef]

77. Markettos, A.T.; Moore, S.W. The Frequency Injection Attack on Ring-Oscillator-Based True Random Number Generators. In
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; pp. 317–331. [CrossRef]

78. Yu, Y.; Moraitis, M.; Dubrova, E. Can Deep Learning Break a True Random Number Generator? IEEE Trans. Circuits Syst. Express
Briefs 2021, 68, 1710–1714. [CrossRef]

79. Tang, Q.; Kim, B.; Lao, Y.; Parhi, K.K.; Kim, C.H. True Random Number Generator circuits based on single- and multi-phase
beat frequency detection. In Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, San Jose, CA, USA, 15–17
September 2014; pp. 1–4. [CrossRef]

80. Bahadur, V.; Selvakumar, D.; Vijendran; Sobha, P.M. Reconfigurable side channel attack resistant true random number generator.
In Proceedings of the 2016 International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA),
Bengaluru, India, 10–12 January 2016; pp. 1–6. [CrossRef]

81. Yang, B.; Rožić, V.; Mentens, N.; Dehaene, W.; Verbauwhede, I. TOTAL: TRNG on-the-fly testing for attack detection using
Lightweight hardware. In Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, Germany, 14–18 March 2016; pp. 127–132.

82. Ebrahimabadi, M.; Younis, M.; Lalouani, W.; Karimi, N. A Novel Modeling-Attack Resilient Arbiter-PUF Design. In Proceedings
of the 2021 34th International Conference on VLSI Design and 2021 20th International Conference on Embedded Systems (VLSID),
Guwahati, India, 20–24 February 2021; pp. 123–128. [CrossRef]

83. Maes, R.; Verbauwhede, I. Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions. In
Information Security and Cryptography; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–37. [CrossRef]

84. Liu, C.Q.; Cao, Y.; Chang, C.H. ACRO-PUF: A Low-power, Reliable and Aging-Resilient Current Starved Inverter-Based Ring
Oscillator Physical Unclonable Function. IEEE Trans. Circuits Syst. 2017, 64, 3138–3149. [CrossRef]

85. Guajardo, J.; Kumar, S.S.; Schrijen, G.J.; Tuyls, P. FPGA Intrinsic PUFs and Their Use for IP Protection. In Proceedings of the
Cryptographic Hardware and Embedded Systems—CHES 2007, Vienna, Austria, 10–13 September 2007; Paillier, P., Verbauwhede,
I., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 63–80.

86. Gong, M.; Zhang, H.; Wang, C.; Tong, Q.; Zhenglin, L. Design and implementation of robust and low-cost SRAM PUF using
PMOS and linear shift register extractor. Microelectron. J. 2020, 103, 104844. [CrossRef]

87. Lee, J.; Lim, D.; Gassend, B.; Suh, G.; van Dijk, M.; Devadas, S. A technique to build a secret key in integrated circuits for
identification and authentication applications. In Proceedings of the 2004 Symposium on VLSI Circuits. Digest of Technical
Papers (IEEE Cat. No.04CH37525), Honolulu, HI, USA, 17–19 June 2004; pp. 176–179. [CrossRef]

88. Venkatesh, A.; Venkatasubramaniyan, A.B.; Xi, X.; Sanyal, A. 0.3 pJ/Bit Machine Learning Resistant Strong PUF Using
Subthreshold Voltage Divider Array. IEEE Trans. Circuits Syst. Express Briefs 2020, 67, 1394–1398. [CrossRef]

89. Amsaad, F.; Razaque, A.; Baza, M.; Kose, S.; Bhatia, S.; Srivastava, G. An Efficient and Reliable Lightweight PUF for IoT-based
Applications. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops),
Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [CrossRef]

90. Kömürcü, G.; Pusane, A.E.; Dündar, G. Robust RO-PUFs with enhanced challenge-response set. In Proceedings of the 2014 11th
International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), Nakhon Ratchasima, Thailand, 14–17 May 2014; pp. 1–6. [CrossRef]

91. Holcomb, D.E.; Burleson, W.P.; Fu, K. Initial SRAM State as a Fingerprint and Source of True Random Numbers for RFID Tags.
Available online: https://spqrlab1.github.io/papers/holcomb-FERNS-RFIDSec07.pdf (accessed on 31 August 2022).

92. Su, Y.; Holleman, J.; Otis, B. A 1.6pJ/bit 96% Stable Chip-ID Generating Circuit using Process Variations. In Proceedings of the
2007 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 11–15 February 2007; pp. 406–611. [CrossRef]

93. Zhuang, H.; Xi, X.; Sun, N.; Orshansky, M. A Strong Subthreshold Current Array PUF Resilient to Machine Learning Attacks.
IEEE Trans. Circuits Syst. 2020, 67, 135–144. [CrossRef]

http://dx.doi.org/10.1109/TC.2006.164
http://dx.doi.org/10.1002/rsa.20207
http://dx.doi.org/10.1364/OL.36.001020
http://www.ncbi.nlm.nih.gov/pubmed/21403762
http://dx.doi.org/10.1007/3-540-36400-5_32
http://dx.doi.org/10.1109/TC.2007.250627
http://dx.doi.org/10.1007/s13389-015-0113-2
http://dx.doi.org/10.1109/JIOT.2021.3109917
http://dx.doi.org/10.1007/978-3-642-29912-4_12
http://dx.doi.org/10.1007/978-3-642-04138-9_23
http://dx.doi.org/10.1109/TCSII.2021.3066338
http://dx.doi.org/10.1109/CICC.2014.6946136
http://dx.doi.org/10.1109/VLSI-SATA.2016.7593048
http://dx.doi.org/10.1109/VLSID51830.2021.00026
http://dx.doi.org/10.1007/978-3-642-14452-3_1
http://dx.doi.org/10.1109/TCSI.2017.2729941
http://dx.doi.org/10.1016/j.mejo.2020.104844
http://dx.doi.org/10.1109/VLSIC.2004.1346548
http://dx.doi.org/10.1109/TCSII.2019.2943121
http://dx.doi.org/10.1109/ICCWorkshops50388.2021.9473510
http://dx.doi.org/10.1109/ECTICon.2014.6839708
https://spqrlab1.github.io/papers/holcomb-FERNS-RFIDSec07.pdf
http://dx.doi.org/10.1109/ISSCC.2007.373466
http://dx.doi.org/10.1109/TCSI.2019.2945247

Entropy 2022, 24, 1566 38 of 39

94. Liu, K.; Fu, Z.; Li, G.; Pu, H.; Guan, Z.; Wang, X.; Chen, X.; Shinohara, H. 36.3 A Modeling Attack Resilient Strong PUF with
Feedback-SPN Structure Having <0.73% Bit Error Rate Through In-Cell Hot-Carrier Injection Burn-In. In Proceedings of the
2021 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; Volume 64,
pp. 502–504. [CrossRef]

95. Xu, C.; Zhang, J.; Law, M.K.; Jiang, Y.; Zhao, X.; Mak, P.I.; Martins, R.P. Modeling Attack Resistant Strong PUF Exploiting
Obfuscated Interconnections with <0.83% Bit-Error Rate. In Proceedings of the 2021 IEEE Asian Solid-State Circuits Conference
(A-SSCC), Busan, Korea, 7–10 November 2021; pp. 1–3. [CrossRef]

96. Maiti, A.; Schaumont, P. The Impact of Aging on a Physical Unclonable Function. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
2014, 22, 1854–1864. [CrossRef]

97. Wang, R.; Selimis, G.; Maes, R.; Goossens, S. Long-term Continuous Assessment of SRAM PUF and Source of Random Numbers.
In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March
2020; pp. 7–12. [CrossRef]

98. Mispan, M.S.; Halak, B.; Chen, Z.; Zwolinski, M. TCO-PUF: A subthreshold physical unclonable function. In Proceedings of
the 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Glasgow, UK, 29 June–2 July 2015;
pp. 105–108. [CrossRef]

99. Mispan, M.S.; Halak, B.; Zwolinski, M. NBTI aging evaluation of PUF-based differential architectures. In Proceedings of the 2016
IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS), Sant Feliu de Guixols, Spain, 4–6
July 2016; pp. 103–108. [CrossRef]

100. Garg, A.; Kim, T.T. Design of SRAM PUF with improved uniformity and reliability utilizing device aging effect. In Proceedings
of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014; pp. 1941–1944.
[CrossRef]

101. Islam, M.N.; Patil, V.C.; Kundu, S. On Enhancing Reliability of Weak PUFs via Intelligent Post-Silicon Accelerated Aging. IEEE
Trans. Circuits Syst. 2018, 65, 960–969. [CrossRef]

102. Zalivaka, S.S.; Ivaniuk, A.A.; Chang, C.H. Low-cost fortification of arbiter PUF against modeling attack. In Proceedings of the
2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [CrossRef]

103. ührmair, U.R.; Sehnke, F.; ölter, J.S.; Dror, G.; Devadas, S.; ürgen Schmidhuber, J. Modeling attacks on physical unclonable
functions. In Proceedings of the CCS ’10: 17th ACM Conference on Computer and Communications Security 2010, Chicago, IL,
USA, 4–8 October 2010. [CrossRef]

104. Khalafalla, M.; Gebotys, C. PUFs Deep Attacks: Enhanced modeling attacks using deep learning techniques to break the security
of double arbiter PUFs. In Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Florence, Italy, 25–29 March 2019; pp. 204–209. [CrossRef]

105. Aseeri, A.O.; Zhuang, Y.; Alkatheiri, M.S. A Machine Learning-Based Security Vulnerability Study on XOR PUFs for Resource-
Constraint Internet of Things. In Proceedings of the 2018 IEEE International Congress on Internet of Things (ICIOT), San
Francisco, CA, USA, 2–7 July 2018; pp. 49–56. [CrossRef]

106. Rührmair, U.; Jaeger, C.; Bator, M.; Stutzmann, M.; Lugli, P.; Csaba, G. Applications of High-Capacity Crossbar Memories in
Cryptography. IEEE Trans. Nanotechnol. 2011, 10, 489–498. [CrossRef]

107. Ebrahimabadi, M.; Lalouani, W.; Younis, M.; Karimi, N. Countering PUF Modeling Attacks through Adversarial Machine
Learning. In Proceedings of the 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA, 7–9 July
2021; pp. 356–361. [CrossRef]

108. Gu, C.; Chang, C.H.; Liu, W.; Yu, S.; Wang, Y.; O’Neill, M. A Modeling Attack Resistant Deception Technique for Securing
Lightweight-PUF-Based Authentication. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 1183–1196. [CrossRef]

109. Mahmoud, A.; Rührmair, U.; Majzoobi, M.; Koushanfar, F. Combined Modeling and Side Channel Attacks on Strong PUFs.
Cryptology ePrint Archive Paper 2013/632. 2013. Available online: https://eprint.iacr.org/2013/632 (accessed on 26 September
2022).

110. Liu, Y.; Xie, Y.; Bao, C.; Srivastava, A. A Combined Optimization-Theoretic and Side- Channel Approach for Attacking Strong
Physical Unclonable Functions. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 73–81. [CrossRef]

111. Arjona, R.; Baturone, I. A dual-factor access control system based on device and user intrinsic identifiers. In Proceedings
of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016;
pp. 4731–4736. [CrossRef]

112. Prada-Delgado, M.A.; Vázquez-Reyes, A.; Baturone, I. Physical unclonable keys for smart lock systems using Bluetooth Low
Energy. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy,
23–26 October 2016; pp. 4808–4813. [CrossRef]

113. Taneja, S.; Rajanna, V.K.; Alioto, M. In-Memory Unified TRNG and Multi-Bit PUF for Ubiquitous Hardware Security. IEEE J.
Solid-State Circuits 2022, 57, 153–166. [CrossRef]

114. Ding, Q.; Jiang, H.; Li, J.; Liu, C.; Jie, Y.; Chen, P.; Zhao, Y.; Ding, Y.; Gong, T.; Yang, J.; et al. Unified 0.75 pJ/Bit TRNG and Attack
Resilient 2F 2/Bit PUF for Robust Hardware Security Solutions with 4-layer Stacking 3D NbOx Threshold Switching Array. In
Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021;
pp. 39.2.1–39.2.4. [CrossRef]

http://dx.doi.org/10.1109/ISSCC42613.2021.9365942
http://dx.doi.org/10.1109/A-SSCC53895.2021.9634729
http://dx.doi.org/10.1109/TVLSI.2013.2279875
http://dx.doi.org/10.23919/DATE48585.2020.9116353
http://dx.doi.org/10.1109/PRIME.2015.7251345
http://dx.doi.org/10.1109/IOLTS.2016.7604680
http://dx.doi.org/10.1109/ISCAS.2014.6865541
http://dx.doi.org/10.1109/TCSI.2017.2766073
http://dx.doi.org/10.1109/ISCAS.2017.8050671
http://dx.doi.org/10.1145/1866307.1866335
http://dx.doi.org/10.23919/DATE.2019.8714862
http://dx.doi.org/10.1109/ICIOT.2018.00014
http://dx.doi.org/10.1109/TNANO.2010.2049367
http://dx.doi.org/10.1109/ISVLSI51109.2021.00071
http://dx.doi.org/10.1109/TCAD.2020.3036807
https://eprint.iacr.org/2013/632
http://dx.doi.org/10.1109/TVLSI.2017.2759731
http://dx.doi.org/10.1109/IECON.2016.7793033
http://dx.doi.org/10.1109/IECON.2016.7792955
http://dx.doi.org/10.1109/JSSC.2021.3125255
http://dx.doi.org/10.1109/IEDM19574.2021.9720641

Entropy 2022, 24, 1566 39 of 39

115. Sala, R.D.; Scotti, G. The DD-Cell: A Double Side Entropic Source exploitable as PUF and TRNG. In Proceedings of the 2022
17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), Villasimius, Italy, 12–15 June 2022; pp. 353–356.
[CrossRef]

116. Rahman, M.T.; Forte, D.; Wang, X.; Tehranipoor, M. Enhancing noise sensitivity of embedded SRAMs for robust true random
number generation in SoCs. In Proceedings of the 2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST), Yilan,
Taiwan, 19–20 December 2016; pp. 1–6. [CrossRef]

117. Fischer, V. A Closer Look at Security in Random Number Generators Design. In Constructive Side-Channel Analysis and Secure
Design; Springer: Berlin/Heidelberg, Germany, 2012; pp. 167–182. [CrossRef]

118. Aura, T. Strategies against replay attacks. In Proceedings of the Proceedings 10th Computer Security Foundations Workshop,
Rockport, MA, USA, 10–12 June 1997. [CrossRef]

119. Xu, M.; Huber, M.; Sun, Z.; England, P.; Peinado, M.; Lee, S.; Marochko, A.; Mattoon, D.; Spiger, R.; Thom, S. Dominance as a
New Trusted Computing Primitive for the Internet of Things. In Proceedings of the 2019 IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 1415–1430. [CrossRef]

120. Horalek, J.; Holík, F.; Horák, O.; Petr, L.; Sobeslav, V. Analysis of the use of Rainbow Tables to break hash. J. Intell. Fuzzy Syst.
2017, 32, 1523–1534. [CrossRef]

121. Ali, H.J.; Jawad, T.M.; Zuhair, H. Data security using random dynamic salting and AES based on master-slave keys for Iraqi dam
management system. Indones. J. Electr. Eng. Comput. Sci. 2021, 23, 1018. [CrossRef]

122. Dworkin, M. Recommendation for Block Cipher Modes of Operation: Methods and Techniques; Technical Report; National Institute of
Standards and Technology: Gaithersburg, MD, USA, 2001.

123. Vaidehi, M.; Rabi, B.J. Design and analysis of AES-CBC mode for high security applications. In Proceedings of the Second
International Conference on Current Trends In Engineering and Technology—ICCTET 2014, Coimbatore, India, 8 July 2014;
pp. 499–502. [CrossRef]

124. AlZain, M.A. Efficient Segment-based Image Ciphering using Discretized Chaotic Standard Map with ECB, OFB and CBC. Int. J.
Adv. Comput. Sci. Appl. 2022, 13. [CrossRef]

125. Kowsalya, T.; Babu, R.G.; Parameshachari, B.D.; Nayyar, A.; Mehmood, R.M. Low Area PRESENT Cryptography in FPGA Using
TRNG-PRNG Key Generation. Comput. Mater. Contin. 2021, 68, 1447–1465. [CrossRef]

126. Menezes, A.J.; van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA, 2018.
[CrossRef]

127. Chaterjee, U.; Mukhopadhyay, D.; Chakraborty, R.S. 3PAA: A Private PUF Protocol for Anonymous Authentication. IEEE Trans.
Inf. Forensics Secur. 2021, 16, 756–769. [CrossRef]

128. Lounis, K.; Zulkernine, M. T2T-MAP: A PUF-Based Thing-to-Thing Mutual Authentication Protocol for IoT. IEEE Access 2021,
9, 137384–137405. [CrossRef]

129. Puntin, D.; Stanzione, S.; Iannaccone, G. CMOS unclonable system for secure authentication based on device variability. In
Proceedings of the ESSCIRC 2008—34th European Solid-State Circuits Conference, Edinburgh, UK, 15–19 September 2008;
pp. 130–133. [CrossRef]

130. Bhargava, M.; Mai, K. An efficient reliable PUF-based cryptographic key generator in 65 nm CMOS. In Proceedings of the 2014
Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 24–28 March 2014; pp. 1–6. [CrossRef]

131. Che, W.; Martin, M.; Pocklassery, G.; Kajuluri, V.; Saqib, F.; Plusquellic, J. A Privacy-Preserving, Mutual PUF-Based Authentication
Protocol. Cryptography 2016, 1, 3. [CrossRef]

132. Hiller, M. Key Derivation with Physical Unclonable Functions. Ph.D. Thesis, Technische Universität München, München,
Germany, 2016.

133. Suh, G.; O’Donnell, C.; Sachdev, I.; Devadas, S. Design and implementation of the AEGIS single-chip secure processor using
physical random functions. In Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05), Madison,
WI, USA, 4–8 June 2005; pp. 25–36. [CrossRef]

134. Rührmair, U.; Sölter, J.; Sehnke, F.; Xu, X.; Mahmoud, A.; Stoyanova, V.; Dror, G.; Schmidhuber, J.; Burleson, W.; Devadas, S. PUF
Modeling Attacks on Simulated and Silicon Data. IEEE Trans. Inf. Forensics Secur. 2013, 8, 1876–1891. [CrossRef]

135. Becker, G.T. The Gap Between Promise and Reality: On the Insecurity of XOR Arbiter PUFs. In Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 535–555. [CrossRef]

136. Yu, M.D.; Hiller, M.; Delvaux, J.; Sowell, R.; Devadas, S.; Verbauwhede, I. A Lockdown Technique to Prevent Machine Learning
on PUFs for Lightweight Authentication. IEEE Trans.-Multi-Scale Comput. Syst. 2016, 2, 146–159. [CrossRef]

137. Delvaux, J. Security Analysis of PUF-Based Key Generation and Entity Authentication. Ph.D. Thesis, Shanghai Jiao Tong
University, Shanghai, China, 2017.

138. Satamraju, K.P.; Malarkodi, B. A PUF-based Mutual Authentication Protocol for Internet of Things. In Proceedings of the 2020
5th International Conference on Computing, Communication and Security (ICCCS), Patna, India, 14–16 October 2020; pp. 1–6.
[CrossRef]

139. Prada-Delgado, M.Á.; Baturone, I.; Dittmann, G.; Jelitto, J.; Kind, A. PUF-derived IoT identities in a zero-knowledge protocol for
blockchain. Internet Things 2020, 9, 100057. [CrossRef]

140. Khan, M.A.; Salah, K. IoT security: Review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 2018,
82, 395–411. [CrossRef]

http://dx.doi.org/10.1109/PRIME55000.2022.9816824
http://dx.doi.org/10.1109/AsianHOST.2016.7835559
http://dx.doi.org/10.1007/978-3-642-29912-4_13
http://dx.doi.org/10.1109/csfw.1997.596787
http://dx.doi.org/10.1109/SP.2019.00084
http://dx.doi.org/10.3233/JIFS-169147
http://dx.doi.org/10.11591/ijeecs.v23.i2.pp1018-1029
http://dx.doi.org/10.1109/ICCTET.2014.6966347
http://dx.doi.org/10.14569/IJACSA.2022.0130550
http://dx.doi.org/10.32604/cmc.2021.014606
http://dx.doi.org/10.1201/9780429466335
http://dx.doi.org/10.1109/TIFS.2020.3021917
http://dx.doi.org/10.1109/ACCESS.2021.3117444
http://dx.doi.org/10.1109/ESSCIRC.2008.4681809
http://dx.doi.org/10.7873/DATE.2014.083
http://dx.doi.org/10.3390/cryptography1010003
http://dx.doi.org/10.1109/ISCA.2005.22
http://dx.doi.org/10.1109/TIFS.2013.2279798
http://dx.doi.org/10.1007/978-3-662-48324-4_27
http://dx.doi.org/10.1109/TMSCS.2016.2553027
http://dx.doi.org/10.1109/ICCCS49678.2020.9276868
http://dx.doi.org/10.1016/j.iot.2019.100057
http://dx.doi.org/10.1016/j.future.2017.11.022

	Introduction
	Entropy Definition
	TRNG
	PRNG
	TRNG
	Entropy Sources of TRNG
	Entropy Harvest Method/Components

	Post Processing
	Risks and Attacks

	PUF
	PUF Models
	Weak PUF
	Strong PUF

	Risks and Attacks
	Working Conditions
	Silicon Aging
	Modeling Attack
	Side Channel Attack on PUFs

	TRNG-PUF United Design
	Applications
	The Applications of Random Numbers in Cryptography
	Nonce Generation
	Salt Generation
	Initialization Vector Generation
	Dynamic Key Generation

	Low-Cost Authentication
	PUF-Based Authentication Protocol
	Privacy Preserving Mutual Authentication

	Secure Key Generation

	Conclusions
	References

